Here is an example in Pytorch:
optimizer = optim.Adam([modifier_var], lr=0.0005)
And here in Tensorflow:
self.train = self.optimizer.minimize(self.loss, var_list=[self.modifier])
But Chainer's optimizers only can use on 'Link', how can I apply Optimizer on Variable in Chainer?
In short, there is no way to directly assign chainer.Variable
(even nor chainer.Parameter
) to chainer.Optimizer
.
The following is some redundant explanation.
First, I re-define Variable
and Parameter
to avoid confusion.
Variable
is (1) torch.Tensor
in PyTorch v4, (2) torch.autograd.Variable
in PyTorch v3, and (3) chainer.Variable
in Chainer v4.
Variable
is an object who holds two tensors; .data
and .grad
. It is the necessary and sufficient condition, so Variable
is not necessarily a learnable parameter, which is a target of the optimizer.
In both libraries, there is another class Parameter
, which is similar but not the same with Variable
. Parameter
is torch.autograd.Parameter
in Pytorch and chainer.Parameter
in Chainer.
Parameter
must be a learnable parameter and should be optimized.
Therefore, there should be no case to register Variable
(not Parameter
) to Optimizer
(although PyTorch allows to register Variable
to Optimizer
: this is just for backward compatibility).
Second, in PyTorch torch.nn.Optimizer
directly optimizes Parameter
, but in Chainer chainer.Optimizer
DOES NOT optimize Parameter
: instead, chainer.UpdateRule
does. The Optimizer
just registers UpdateRule
s to Parameter
s in a Link
.
Therefore, it is only natural that chainer.Optimizer
does not receive Parameter
as its arguments, because it is just a "delivery-man" of UpdateRule
.
If you want to attach different UpdateRule
for each Parameter
, you should directly create an instance of UpdateRule
subclass, and attach it to the Parameter
.