Search code examples
rvariablesnumericrecodeordinal

R: How to recode numeric variable into an ordinal variable with same N for each category?


So basically I want to turn a numeric income variable into an ordinal income variable where the cut-off points for the categories are decided so that each category ends up with the same N (or 1 less for one of the categories if it's an odd number N, to begin with).

Does anyone know how I can do this in R?


Solution

  • Here's an example using mtcars.

    I'd suggest you use the ntile function that splits your variable into groups with the same number of cases.

    Assume that the variable of interest is disp:

    library(dplyr)
    
    mtcars %>%
      group_by(g = ntile(disp, 3)) %>%                        # split variable into 3 groups
      mutate(g_range = paste0(min(disp), "-", max(disp))) %>% # create the ranges
      ungroup() -> df
    

    Your updated data (df) will look like this:

    # # A tibble: 32 x 13
    #    mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb     g g_range  
    #    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <chr>    
    # 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4     2 146.7-301
    # 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4     2 146.7-301
    # 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1     1 71.1-145 
    # 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1     2 146.7-301
    # 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2     3 304-472  
    # 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1     2 146.7-301
    # 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4     3 304-472  
    # 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2     2 146.7-301
    # 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2     1 71.1-145 
    #10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4     2 146.7-301
    # # ... with 22 more rows
    

    You can check the number of cases within each group:

    df %>% count(g, g_range)
    
    # # A tibble: 3 x 3
    #       g g_range       n
    #   <int> <chr>     <int>
    # 1     1 71.1-145     11
    # 2     2 146.7-301    11
    # 3     3 304-472      10