Raised by this question's comments (I can see that this is irrelevant), I am now aware that using dictionaries for data that needs to be queried/accessed regularly is not good, speedwise.
I have a situation of something like this:
someDict = {}
someDict[(-2, -2)] = something
somedict[(3, -10)] = something else
I am storing keys of coordinates to objects that act as arrays of tiles in a game. These are going to be negative at some point, so I can't use a list or some kind of sparse array (I think that's the term?).
Can I either:
I would use a list, but then the querying would go from O(log n) to O(n) to find the area at (x, y). (I think my timings are off here too).
Dictionary lookups are very fast. Searching for part of the key (e.g. all tiles in row x) is what's not fast. You could use a dict of dicts. Rather than a single dict indexed by a 2-tuple, use nested dicts like this:
somedict = {0: {}, 1:{}}
somedict[0][-5] = "thingy"
somedict[1][4] = "bing"
Then if you want all the tiles in a given "row" it's just somedict[0]
.
You will need some logic to add the secondary dictionaries where necessary and so on. Hint: check out getitem()
and setdefault()
on the standard dict
type, or possibly the collections.defaultdict
type.
This approach gives you quick access to all tiles in a given row. It's still slow-ish if you want all the tiles in a given column (though at least you won't need to look through every single cell, just every row). However, if needed, you could get around that by having two dicts of dicts (one in column, row order and the other in row, column order). Updating then becomes twice as much work, which may not matter for a game where most of the tiles are static, but access is very easy in either direction.
If you only need to store numbers and most of your cells will be 0, check out scipy's sparse matrix classes.