Given a pandas
dataframe
that looks as below column_a
and column_b
. How can I construct 2 additional columns, one that counts the frequency of each value from column_a
for all columns, and another that counts the unique number of values from where values in column_a
are the same:
column_a | column_b | col_a_count | count_unique_b_where_a
0 1 4 3
0 1 4 3
0 2 4 3
0 3 4 3
2 0 3 1
2 0 3 1
2 0 3 1
5 3 1 1
9 5 6 5
9 5 6 5
9 3 6 5
9 4 6 5
9 2 6 5
9 1 6 5
Using groupby
and agg
:
s = (df.groupby('column_a').agg(
{'column_a': 'count', 'column_b': 'nunique'}).reindex(df.column_a))
column_a column_b
column_a
0 4 3
0 4 3
0 4 3
0 4 3
2 3 1
2 3 1
2 3 1
5 1 1
9 6 5
9 6 5
9 6 5
9 6 5
9 6 5
9 6 5