Let's say you have a dataframe like this:
>>> df = pd.DataFrame({
'epoch_minute': [i for i in reversed(range(25090627,25635267))],
'count': [random.randint(11, 35) for _ in range(25090627,25635267)]})
>>> df.head()
epoch_minute count
0 25635266 12
1 25635265 20
2 25635264 33
3 25635263 11
4 25635262 35
and some relative epoch minute deltas like this:
day = 1440
week = 10080
month = 302400
How do I accomplish the equivalent of this code block:
for i,r in df.iterrows():
if r['epoch_minute'] - day in df['epoch_minute'].values and \
r['epoch_minute'] - week in df['epoch_minute'].values and \
r['epoch_minute'] - month in df['epoch_minute'].values:
# do stuff
using this syntax:
valid_rows = df.loc[(df['epoch_minute'] == df['epoch_minute'] - day) &
(df['epoch_minute'] == df['epoch_minute'] - week) &
(df['epoch_minute'] == df['epoch_minute'] - month]
I understand why the loc
select doesn't work, but I'm just asking if there exists a more elegant way to select the valid rows without iterating through the rows of the dataframe.
Add parentheses and &
for bitwise AND
with isin
for check membership:
valid_rows = df[(df['epoch_minute'].isin(df['epoch_minute'] - day)) &
(df['epoch_minute'].isin(df['epoch_minute'] - week)) &
(df['epoch_minute'].isin(df['epoch_minute'] - month))]
valid_rows = df[((df['epoch_minute'] - day).isin(df['epoch_minute'])) &
((df['epoch_minute']- week).isin(df['epoch_minute'] )) &
((df['epoch_minute'] - month).isin(df['epoch_minute']))]