Search code examples
tensorflowmachine-learningneural-networkkerasdeep-learning

ResourceExhaustedError when declaring Embeddings layer (Keras)


I am creating a NN for NLP, starting with a Embedding layer (using pre-trained embeddings). But when I declare the Embedding layer in Keras (Tensorflow backend), I have a ResourceExhaustedError :

ResourceExhaustedError: OOM when allocating tensor with shape[137043,300] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
 [[{{node embedding_4/random_uniform/RandomUniform}} = RandomUniform[T=DT_INT32, dtype=DT_FLOAT, seed=87654321, seed2=9524682, _device="/job:localhost/replica:0/task:0/device:GPU:0"](embedding_4/random_uniform/shape)]]
 Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

I already checked Google : most of ResourceExhaustedError happen at training time, and is because the RAM of the GPU is not big enough. it is fixed by reducing batch size.

But in my case, I didn't even start training ! This line is the problem :

q1 = Embedding(nb_words + 1, 
             param['embed_dim'].value, 
             weights=[word_embedding_matrix], 
             input_length=param['sentence_max_len'].value)(question1)

Here, word_embedding_matrix is a matrix of size (137043, 300), the pretrained embeddings.

As far as I know, this will not take gigantic amount of memory (unlike here) :

137043 * 300 * 4 bytes = 53 kiB

And here is the GPU used :

 +-----------------------------------------------------------------------------+
 | NVIDIA-SMI 396.26                 Driver Version: 396.26                    |
 |-------------------------------+----------------------+----------------------+
 | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
 | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
 |===============================+======================+======================|
 |   0  GeForce GTX 108...  Off  | 00000000:02:00.0 Off |                  N/A |
 | 23%   32C    P8    16W / 250W |   6956MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   1  GeForce GTX 108...  Off  | 00000000:03:00.0 Off |                  N/A |
 | 23%   30C    P8    16W / 250W |    530MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   2  GeForce GTX 108...  Off  | 00000000:82:00.0 Off |                  N/A |
 | 23%   34C    P8    16W / 250W |    333MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   3  GeForce GTX 108...  Off  | 00000000:83:00.0 Off |                  N/A |
 | 24%   46C    P2    58W / 250W |   4090MiB / 11178MiB |     23%      Default |
 +-------------------------------+----------------------+----------------------+

 +-----------------------------------------------------------------------------+
 | Processes:                                                       GPU Memory |
 |  GPU       PID   Type   Process name                             Usage      |
 |=============================================================================|
 |    0      1087      C   uwsgi                                       1331MiB |
 |    0      1088      C   uwsgi                                       1331MiB |
 |    0      1089      C   uwsgi                                       1331MiB |
 |    0      1090      C   uwsgi                                       1331MiB |
 |    0      1091      C   uwsgi                                       1331MiB |
 |    0      4176      C   /usr/bin/python3                             289MiB |
 |    1      2631      C   ...e92/venvs/wordintent_venv/bin/python3.6   207MiB |
 |    1      4176      C   /usr/bin/python3                             313MiB |
 |    2      4176      C   /usr/bin/python3                             323MiB |
 |    3      4176      C   /usr/bin/python3                             347MiB |
 |    3     10113      C   python                                      1695MiB |
 |    3     13614      C   python3                                     1347MiB |
 |    3     14116      C   python                                       689MiB |
 +-----------------------------------------------------------------------------+

Does anyone know why I meet this exception ?


Solution

  • From this link, configuring TensorFlow to not allocate maximum GPU directly seems to fix the problem.

    Running this before the declaration of the model's layers fixed the problem :

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.3
    session = tf.Session(config=config)
    K.set_session(session)