There seems to be no problem when training my network because it converges and falls below 0.01 error. However when I load my trained network, and introduce the evaluation set, it outputs the same results for all the evaluation set rows (the actual prediction, not the training phase). I trained my network with resilient propagation with 9 inputs, 1 hidden layer with 7 hidden neurons and 1 output neuron. UPDATE: My data is normalized using min-max. i am trying to predict an electric load data.
Here is the sample data, first 9 rows are the inputs while the 10th is the ideal value:
0.5386671932975533, 1100000.0, 0.0, 1.0, 40.0, 1.0, 30.0, 9.0, 2014.0 , 0.5260616667545941
0.5260616667545941, 1100000.0, 0.0, 1.0, 40.0, 2.0, 30.0, 9.0, 2014.0, 0.5196499668339777
0.5196499668339777, 1100000.0, 0.0, 1.0, 40.0, 3.0, 30.0, 9.0, 2014.0, 0.5083828048375548
0.5083828048375548, 1100000.0, 0.0, 1.0, 40.0, 4.0, 30.0, 9.0, 2014.0, 0.49985462144799725
0.49985462144799725, 1100000.0, 0.0, 1.0, 40.0, 5.0, 30.0, 9.0, 2014.0, 0.49085956670499675
0.49085956670499675, 1100000.0, 0.0, 1.0, 40.0, 6.0, 30.0, 9.0, 2014.0, 0.485008112408512
Here's the full code:
public class ANN
{
//training
//public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2012,4,1,1) and (2014,9,29, 96) ORDER BY ID";
//testing
public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2014,9,30,1) and (2014,9,30, 92) ORDER BY ID";
//validation
//public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2014,9,30,93) and (2014,9,30, 96) ORDER BY ID";
public final static int INPUT_SIZE = 9;
public final static int IDEAL_SIZE = 1;
public final static String SQL_DRIVER = "org.postgresql.Driver";
public final static String SQL_URL = "jdbc:postgresql://localhost/ANN";
public final static String SQL_UID = "postgres";
public final static String SQL_PWD = "";
public static void main(String args[])
{
Mynetwork();
//train network. will add customizable params later.
//train(trainingData());
//evaluate network
evaluate(trainingData());
Encog.getInstance().shutdown();
}
public static void evaluate(MLDataSet testSet)
{
BasicNetwork network = (BasicNetwork)EncogDirectoryPersistence.loadObject(new File("directory"));
// test the neural network
System.out.println("Neural Network Results:");
for(MLDataPair pair: testSet ) {
final MLData output = network.compute(pair.getInput());
System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1) + "," + pair.getInput().getData(2) + "," + pair.getInput().getData(3) + "," + pair.getInput().getData(4) + "," + pair.getInput().getData(5) + "," + pair.getInput().getData(6) + "," + pair.getInput().getData(7) + "," + pair.getInput().getData(8) + "," + "Predicted=" + output.getData(0) + ", Actual=" + pair.getIdeal().getData(0));
}
}
public static BasicNetwork Mynetwork()
{
//basic neural network template. Inputs should'nt have activation functions
//because it affects data coming from the previous layer and there is no previous layer before the input.
BasicNetwork network = new BasicNetwork();
//input layer with 2 neurons.
//The 'true' parameter means that it should have a bias neuron. Bias neuron affects the next layer.
network.addLayer(new BasicLayer(null , true, 9));
//hidden layer with 3 neurons
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 5));
//output layer with 1 neuron
network.addLayer(new BasicLayer(new ActivationSigmoid(), false, 1));
network.getStructure().finalizeStructure() ;
network.reset();
return network;
}
public static void train(MLDataSet trainingSet)
{
//Backpropagation(network, dataset, learning rate, momentum)
//final Backpropagation train = new Backpropagation(Mynetwork(), trainingSet, 0.1, 0.9);
final ResilientPropagation train = new ResilientPropagation(Mynetwork(), trainingSet);
//final QuickPropagation train = new QuickPropagation(Mynetwork(), trainingSet, 0.9);
int epoch = 1;
do {
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;
} while((train.getError() > 0.01));
System.out.println("Saving network");
System.out.println("Saving Done");
EncogDirectoryPersistence.saveObject(new File("directory"), Mynetwork());
}
public static MLDataSet trainingData()
{
MLDataSet trainingSet = new SQLNeuralDataSet(
ANN.SQL,
ANN.INPUT_SIZE,
ANN.IDEAL_SIZE,
ANN.SQL_DRIVER,
ANN.SQL_URL,
ANN.SQL_UID,
ANN.SQL_PWD);
return trainingSet;
}
}
Here is my result:
Predicted=0.4451817588640455, Actual=0.5260616667545941
Predicted=0.4451817588640455, Actual=0.5196499668339777
Predicted=0.4451817588640455, Actual=0.5083828048375548
Predicted=0.4451817588640455, Actual=0.49985462144799725
Predicted=0.4451817588640455, Actual=0.49085956670499675
Predicted=0.4451817588640455, Actual=0.485008112408512
Predicted=0.4451817588640455, Actual=0.47800504210686795
Predicted=0.4451817588640455, Actual=0.4693212349328293
(...and so on with the same "predicted")
Results im expecting (I changed the "predicted" with something random for demonstration purposes, indicating that the network is actually predicting):
Predicted=0.4451817588640455, Actual=0.5260616667545941
Predicted=0.5123312331212122, Actual=0.5196499668339777
Predicted=0.435234234234254365, Actual=0.5083828048375548
Predicted=0.673424556563455, Actual=0.49985462144799725
Predicted=0.2344673345345544235, Actual=0.49085956670499675
Predicted=0.123346457544324, Actual=0.485008112408512
Predicted=0.5673452342342342, Actual=0.47800504210686795
Predicted=0.678435234423423423, Actual=0.4693212349328293
The first reason to consider when you get weird results with neural networks is normalization. Your data must be normalized, otherwise, yes, the training will result in skewed NN which will produce the same outcome all the time, it is a common symptom.
Always normalize your data before feeding it into a neural network. This is important because if you consider the sigmoid activation function it is basically flat for larger values (positive and negative), resulting in a constant behavior of your neural net. Try normalizing as such input = (input-median(input)) / std(input)