I am getting an error on fit_generator. My generator returns the following:
yield(row.values, label)
For example, using it:
myg = generate_array()
for i in myg:
print((i[0].shape))
print(i)
break
(9008,)
(array([0.116516, 0.22419 , 0.03373 , ..., 0. , 0. , 0. ]), 0)
But the following throws an exception:
model = Sequential()
model.add(Dense(84, activation='relu', input_dim=9008))
ValueError: Error when checking input: expected dense_1_input to have shape
(9008,) but got array with shape (1,)
Any idea?
As suggested by Kota Mori: data generator needs to give a batch of data, not a single sample. See e.g.: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
Since I want a stochastic gradient descent (batch size is one) the following code fixed the problem:
def generate_array():
while True:
X = np.empty((1, 9008))
y = np.empty((1), dtype=int)
# Some processing
X[0] = row
y[0] = label
yield(X,y)