I have to test some function with a sample data:
data = [
[[10, 20, 30], 10],
[[20, 30], 20],
[[40], 30],
]
where the first element in each row, lists, contains N=(1 to 5) random integer elements generated via:
st.lists(
st.integers(min_value=10),
min_size=2,
max_size=5,
unique=True)
Second elements in each row contain a random sample from a set of all unique integers from all generated lists.
So for my data
example:
How do I implement such a strategy with Hypothesis testing framework?
This one does not works:
int_list = st.integers(min_value=10)
@given(st.lists(
elements=st.tuples(
int_list,
st.sampled_from(int_list))
Check out the docs on adapting strategies - you can do this with .flatmap(...)
, but defining a custom strategy with @composite
might be simpler.
# With flatmap
elem_strat = lists(
integers(), min_size=2, max_size=5, unique=True
).flatmap(
lambda xs: tuples(just(xs), sampled_from(xs)).map(list)
)
# With @composite
@composite
def elem_strat_func(draw):
xs = draw(lists(
integers(), min_size=2, max_size=5, unique=True
)
an_int = draw(sampled_from(xs))
return [xs, an_int]
elem_strat = elem_strat_func()
# then use either as
@given(lists(elem_strat))
def test_something(xs): ...