Search code examples
rplotglmemmeans

Emmeans continuous independant variable


I want to explan Type_f with Type_space of the experiment and the rate of Exhaustion_product and quantitative variable Age.

Here is my data :

res=structure(list(Type_space = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), .Label = c("", 
    "29-v1", "29-v2", "88-v1", "88-v2"), class = "factor"), Id = c(1L, 
    2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 
    29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 
    42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 
    55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 
    68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 
    81L, 82L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 
    13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 
    26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 
    39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 
    52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 
    65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 
    78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 
    91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 
    103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 
    114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 
    125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 
    136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 
    147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 
    158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 1L, 
    2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 
    29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 
    42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 
    55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 
    68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 
    81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 
    94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 1L, 2L, 
    3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 
    17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 
    30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 
    43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 
    56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 
    69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 
    82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 
    95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 
    106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 
    117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 
    128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 
    139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 
    150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 
    161L, 162L, 163L, 164L), Age = c(3, 10, 1, 5, 4, 2, 1, 8, 2, 
    13, 1, 6, 3, 5, 2, 1, 3, 8, 3, 6, 1, 3, 7, 1, 2, 2, 2, 1, 2, 
    5, 4, 1, 6, 3, 6, 8, 2, 3, 4, 7, 3, 2, 6, 2, 3, 7, 1, 5, 4, 1, 
    4, 3, 2, 3, 5, 5, 2, 1, 1, 5, 8, 7, 2, 2, 4, 3, 4, 4, 2, 2, 10, 
    7, 5, 3, 3, 5, 7, 5, 3, 4, 5, 4, 1, 8, 6, 1, 12, 1, 6, 3, 4, 
    4, 13, 5, 2, 7, 7, 20, 1, 1, 1, 7, 1, 4, 3, 8, 2, 2, 4, 1, 1, 
    2, 3, 2, 2, 6, 11, 2, 5, 5, 9, 4, 4, 2, 7, 2, 7, 10, 6, 9, 2, 
    2, 5, 11, 1, 8, 8, 4, 1, 2, 14, 11, 13, 20, 3, 3, 4, 16, 2, 6, 
    11, 9, 11, 4, 5, 6, 19, 5, 2, 6, 1, 7, 11, 3, 9, 2, 3, 6, 20, 
    8, 6, 2, 11, 18, 9, 3, 7, 3, 2, 1, 8, 3, 5, 6, 2, 5, 8, 11, 4, 
    9, 7, 2, 12, 8, 2, 9, 5, 4, 15, 5, 13, 5, 10, 13, 7, 6, 1, 12, 
    12, 10, 4, 2, 16, 7, 17, 11, 18, 4, 3, 12, 1, 3, 7, 3, 6, 5, 
    11, 10, 12, 6, 14, 8, 6, 7, 8, 5, 10, 12, 6, 13, 3, 11, 14, 7, 
    9, 9, 4, 13, 4, 2, 1, 2, 2, 1, 7, 9, 3, 10, 3, 2, 1, 3, 1, 4, 
    2, 4, 5, 4, 2, 13, 4, 1, 3, 1, 11, 4, 1, 3, 3, 7, 5, 4, 5, 6, 
    1, 2, 1, 2, 1, 6, 1, 7, 6, 9, 5, 1, 6, 3, 2, 3, 3, 8, 8, 3, 2, 
    2, 4, 2, 5, 2, 6, 8, 11, 1, 6, 3, 3, 4, 5, 5, 7, 4, 2, 7, 3, 
    3, 1, 3, 9, 5, 2, 4, 12, 1, 4, 5, 2, 7, 6, 1, 2, 6, 4, 2, 7, 
    3, 5, 5, 3, 7, 1, 5, 2, 1, 15, 3, 5, 2, 5, 13, 6, 2, 3, 5, 2, 
    8, 4, 2, 6, 7, 2, 4, 1, 13, 8, 2, 1, 2, 1, 1, 5, 2, 1, 6, 11, 
    4, 1, 7, 7, 4, 3, 5, 1, 4, 10, 1, 2, 6, 1, 11, 3, 8, 9, 2, 6, 
    8, 11, 14, 16, 4, 1, 4, 2, 1, 10, 4, 9, 3, 12, 8, 11, 8, 8, 5, 
    1, 4, 13, 3, 8, 5, 14, 3, 5, 5, 12, 1, 3, 4, 5, 2, 7, 6, 9, 6, 
    10, 5, 2, 3, 2, 10, 10, 10, 10, 10, 1, 14, 3, 5, 9, 6, 2, 2, 
    2, 4, 4, 11, 14, 2, 2, 2, 8, 7, 2, 10, 12, 1, 6, 10, 2, 3, 5, 
    10, 6, 1, 8, 4, 11, 5, 4, 3, 6, 2, 4, 6, 9, 3, 9, 11, 7, 3, 15, 
    3, 7, 3, 5, 4, 6, 9, 13, 8, 5, 7, 8, 8, 5, 10), Type_product = c("f", 
    "s", "f", "f", "f", "f", "s", "c", "s", "f", "c", "f", "f", "f", 
    "s", "s", "f", "f", "c", "f", "s", "f", "f", "s", "f", "c", "f", 
    "f", "s", "f", "f", "c", "f", "c", "f", "f", "f", "f", "f", "c", 
    "c", "c", "f", "f", "c", "c", "f", "c", "c", "c", "c", "c", "s", 
    "f", "c", "c", "c", "s", "f", "c", "f", "f", "c", "c", "f", "c", 
    "c", "c", "f", "c", "c", "c", "c", "c", "c", "c", "f", "c", "c", 
    "c", "c", "f", "c", "f", "f", "s", "f", "c", "f", "f", "f", "c", 
    "f", "f", "f", "f", "f", "s", "c", "c", "f", "f", "c", "c", "f", 
    "f", "c", "c", "f", "f", "s", "f", "c", "c", "f", "f", "f", "c", 
    "f", "f", "f", "c", "f", "f", "f", "f", "f", "f", "c", "f", "f", 
    "f", "f", "c", "s", "f", "c", "f", "f", "c", "f", "f", "f", "c", 
    "f", "c", "c", "c", "f", "f", "f", "f", "c", "c", "c", "f", "f", 
    "c", "c", "f", "c", "f", "f", "c", "c", "c", "c", "f", "f", "f", 
    "c", "c", "c", "f", "c", "f", "c", "f", "f", "f", "c", "f", "c", 
    "c", "c", "c", "c", "f", "c", "c", "c", "c", "c", "c", "c", "f", 
    "f", "f", "c", "f", "c", "f", "f", "c", "c", "f", "f", "f", "c", 
    "c", "c", "f", "c", "c", "c", "c", "c", "f", "c", "f", "f", "c", 
    "c", "f", "c", "f", "c", "f", "c", "c", "c", "f", "c", "c", "c", 
    "c", "c", "c", "c", "f", "c", "c", "f", "c", "c", "f", "f", "c", 
    "f", "f", "s", "c", "s", "c", "f", "c", "c", "s", "c", "c", "s", 
    "c", "m", "c", "c", "f", "f", "f", "f", "f", "f", "s", "f", "f", 
    "c", "c", "f", "c", "f", "f", "f", "c", "f", "f", "f", "s", "f", 
    "f", "c", "f", "c", "f", "m", "c", "c", "c", "f", "s", "f", "f", 
    "f", "c", "s", "c", "m", "f", "c", "m", "c", "f", "c", "f", "f", 
    "f", "c", "m", "f", "c", "c", "f", "c", "f", "c", "c", "c", "c", 
    "c", "f", "f", "f", "c", "m", "f", "m", "m", "c", "c", "c", "c", 
    "m", "m", "c", "f", "m", "m", "m", "m", "m", "m", "m", "m", "m", 
    "c", "c", "f", "f", "f", "f", "c", "f", "m", "f", "f", "f", "c", 
    "f", "f", "f", "c", "f", "f", "c", "c", "f", "c", "f", "c", "m", 
    "f", "c", "f", "c", "f", "f", "f", "f", "c", "c", "f", "f", "c", 
    "c", "f", "f", "f", "f", "f", "f", "c", "f", "c", "c", "f", "c", 
    "f", "f", "f", "f", "f", "f", "f", "c", "f", "c", "f", "c", "f", 
    "c", "f", "c", "f", "f", "c", "c", "c", "c", "c", "f", "f", "f", 
    "c", "f", "c", "f", "f", "c", "c", "f", "f", "c", "f", "c", "f", 
    "c", "c", "c", "f", "f", "c", "f", "c", "c", "f", "c", "f", "c", 
    "f", "c", "f", "c", "m", "c", "c", "m", "c", "c", "f", "c", "c", 
    "f", "c", "c", "c", "f", "c", "c", "m", "c", "m", "m", "c", "c", 
    "f", "c", "c", "c", "c", "m", "c", "c", "c", "m", "m", "m", "c", 
    "c", "c", "c", "m", "m", "f", "m", "m", "m", "m", "m", "m", "m", 
    "m", "m", "m", "m", "m", "m", "m", "m"), Exhaustion_product = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L), .Label = c("(0,10]", "(10,20]", "(20,30]", "(30,40]", "(40,50]", 
    "(50,60]", "(60,70]", "(70,80]", "(80,90]", "(90,100]"), class = "factor"), 
        Type_f = c(1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 
        1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 
        1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 
        0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 
        0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 
        1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 
        1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 
        1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 
        1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 
        1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 
        1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 
        1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 
        1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 
        0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 
        1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 
        0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 
        0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 
        0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 
        0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 
        1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 
        0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 
        1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 
        0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 
        0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 0)), .Names = c("Type_space", "Id", "Age", 
    "Type_product", "Exhaustion_product", "Type_f"), row.names = c(1L, 
    2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 
    29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 
    42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 
    55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 
    68L, 69L, 70L, 71L, 73L, 75L, 76L, 79L, 80L, 81L, 82L, 84L, 85L, 
    86L, 91L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 
    111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 
    122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 
    133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 
    144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 
    155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 
    166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 
    177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 
    188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 197L, 198L, 199L, 
    201L, 202L, 203L, 204L, 206L, 207L, 208L, 209L, 210L, 212L, 213L, 
    214L, 215L, 217L, 218L, 219L, 220L, 221L, 222L, 223L, 225L, 227L, 
    229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L, 
    242L, 243L, 244L, 246L, 247L, 248L, 249L, 250L, 251L, 253L, 254L, 
    256L, 259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L, 269L, 270L, 
    272L, 273L, 274L, 276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 
    284L, 285L, 287L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 
    297L, 298L, 300L, 301L, 302L, 303L, 306L, 308L, 309L, 311L, 312L, 
    313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L, 322L, 323L, 325L, 
    326L, 327L, 328L, 329L, 331L, 332L, 334L, 335L, 336L, 338L, 339L, 
    340L, 341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L, 350L, 
    352L, 353L, 354L, 356L, 357L, 358L, 359L, 360L, 361L, 363L, 364L, 
    365L, 366L, 367L, 368L, 369L, 370L, 372L, 373L, 374L, 375L, 376L, 
    377L, 378L, 379L, 380L, 381L, 382L, 384L, 385L, 387L, 388L, 389L, 
    391L, 393L, 394L, 395L, 396L, 397L, 398L, 399L, 400L, 401L, 402L, 
    404L, 407L, 408L, 409L, 411L, 412L, 413L, 414L, 415L, 416L, 417L, 
    418L, 419L, 420L, 421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L, 
    429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L, 439L, 
    440L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L, 450L, 451L, 
    452L, 453L, 454L, 455L, 456L, 457L, 458L, 459L, 460L, 461L, 462L, 
    463L, 464L, 465L, 466L, 467L, 468L, 469L, 470L, 471L, 472L, 473L, 
    474L, 476L, 477L, 478L, 479L, 480L, 481L, 482L, 483L, 484L, 486L, 
    487L, 488L, 489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 
    498L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L, 509L, 
    510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L, 520L, 
    521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L, 530L, 531L, 
    532L, 534L, 535L, 536L, 537L, 538L, 539L, 540L, 541L, 542L, 543L, 
    547L, 548L, 550L, 551L, 552L, 553L, 554L, 555L, 556L, 557L, 558L, 
    559L, 560L, 561L, 562L, 563L, 565L, 566L, 567L, 568L, 569L, 570L, 
    571L, 572L, 573L, 575L, 577L, 579L, 580L, 581L, 582L, 583L, 585L, 
    586L, 587L, 590L, 592L, 599L, 606L, 608L), class = "data.frame")

    an=Anova(glm(Type_f ~  Type_space  + Exhaustion_product + Age , family=binomial,data=res))
    gl=glm(Type_f ~  Type_space  + Exhaustion_product + Age  , family=binomial,data=res)
    library("emmeans")
    emmp <- emmeans( gl, pairwise ~ Exhaustion_product + Age)
    summary( emmp, infer=TRUE)

(1) In the case of categorical variable the results are clear. But in the case of Age which is significant in the GLM, what is the value generated in the emmeans ?5.455426.Is that is means ? How can I interpret this ?

 (0,10]             5.455426  0.36901411 0.2935894 Inf -0.20641061  0.94443883   1.257  0.2088

(2)I want to generate graphic representationof the interaction age and Exhaustion_product. Also this do not make sens.

emmip(gl, Exhaustion_product ~ Age)

Edit 1 Contrast result

$contrasts
 contrast                                                estimate        SE  df   asymp.LCL asymp.UCL z.ratio p.value
 (0,10],5.45542635658915 - (10,20],5.45542635658915    0.33231353 0.4078967 Inf -0.95814279 1.6227698   0.815  0.9984
 (0,10],5.45542635658915 - (20,30],5.45542635658915   -0.53694399 0.4194460 Inf -1.86393835 0.7900504  -1.280  0.9582
 (0,10],5.45542635658915 - (30,40],5.45542635658915   -0.16100309 0.4139472 Inf -1.47060101 1.1485948  -0.389  1.0000
 (0,10],5.45542635658915 - (40,50],5.45542635658915    0.40113723 0.4021403 Inf -0.87110757 1.6733820   0.998  0.9925
 (0,10],5.45542635658915 - (50,60],5.45542635658915    0.60576562 0.4106536 Inf -0.69341247 1.9049437   1.475  0.9022
 (0,10],5.45542635658915 - (60,70],5.45542635658915    1.38800301 0.4319258 Inf  0.02152631 2.7544797   3.214  0.0430
 (0,10],5.45542635658915 - (70,80],5.45542635658915    1.01677522 0.4147441 Inf -0.29534399 2.3288944   2.452  0.2952
 (0,10],5.45542635658915 - (80,90],5.45542635658915    1.99085692 0.4747929 Inf  0.48876247 3.4929514   4.193  0.0011
 (0,10],5.45542635658915 - (90,100],5.45542635658915   2.03923289 0.4745872 Inf  0.53778910 3.5406767   4.297  0.0007

Solution

  • Because this question seems like a self-learning one, I am going to do a similar example, not the same data. But the structure is the same, with one factor and one covariate as predictors.

    The example is the emmeans::fiber dataset. Its response variable is fiber strength, the continuous predictor is the diameter, and the factor is the machine it was made on.

    Model:

    > mod = glm(log(strength) ~ machine + diameter, data = fiber)
    > summary(mod)
    ... (output has been abbreviated) ...
    Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
    (Intercept)  3.124387   0.068374  45.695 6.74e-14
    machineB     0.026025   0.023388   1.113    0.290
    machineC    -0.044593   0.025564  -1.744    0.109
    diameter     0.023557   0.002633   8.946 2.22e-06
    
    (Dispersion parameter for gaussian family taken to be 0.001356412)
    

    Analysis with emmeans is based on the reference grid, which by default consists of all levels of the factor and the mean of the covariate:

    > ref_grid(mod)
    'emmGrid' object with variables:
        machine = A, B, C
        diameter = 24.133
    Transformation: “log” 
    

    You can confirm in R that mean(fiber$diameter) is 24.133. I emphasize this is the mean of the diameter values, not of anything in the model.

    > summary(.Last.value)
     machine diameter prediction         SE  df
     A       24.13333   3.692901 0.01670845 Inf
     B       24.13333   3.718925 0.01718853 Inf
     C       24.13333   3.648307 0.01819206 Inf
    
    Results are given on the log (not the response) scale.
    

    Those summary values are the predictions from mod at each combination of machine and diameter. Now look at EMMs for machine

    > emmeans(mod, "machine")
     machine   emmean         SE  df asymp.LCL asymp.UCL
     A       3.692901 0.01670845 Inf  3.660153  3.725649
     B       3.718925 0.01718853 Inf  3.685237  3.752614
     C       3.648307 0.01819206 Inf  3.612652  3.683963
    
    Results are given on the log (not the response) scale. 
    Confidence level used: 0.95
    

    ... we get exactly the same three predictions. But if we look at diameter:

    > emmeans(mod, "diameter")
     diameter   emmean          SE  df asymp.LCL asymp.UCL
     24.13333 3.686711 0.009509334 Inf  3.668073  3.705349
    
    Results are averaged over the levels of: machine 
    Results are given on the log (not the response) scale. 
    Confidence level used: 0.95
    

    ... we get the EMM is equal to the average of the three predicted values in the reference grid. And note that it says in the annotations that results were averaged over machine, so it is worth reading that.

    To get a graphical representation of the model results, we can do

    > emmip(mod, machine ~ diameter, cov.reduce = range)
    

    results of emmip()

    The argument cov.reduce = range is added to cause the reference grid to use the min and max diameter, rather than its average. Without that, we'd have gotten three dots instead of three lines. This plot still shows the model predictions, just over a more detailed grid of values. Notice that all three lines have the same slope. That is vbecause the model was specified that way: the diameter effect is added to the machine effect. Each line thus has the common slope of 0.023557 (see the output from summary(mod).

    There is no post hoc test needed for diameter, since its one effect is already tested in summary(mod).

    One last thing. The model used log(strength) as the response. If we want the EMMs on the same scale as strength, just add type = "response":

    > emmeans(mod, "machine", type = "response")
     machine response        SE  df asymp.LCL asymp.UCL
     A       40.16118 0.6710311 Inf  38.86728  41.49815
     B       41.22008 0.7085126 Inf  39.85455  42.63239
     C       38.40960 0.6987496 Inf  37.06421  39.80384
    
    Confidence level used: 0.95 
    Intervals are back-transformed from the log scale
    

    Again, the annotations below the results help explain the output.