I want to explan Type_f
with Type_space
of the experiment and the rate of Exhaustion_product
and quantitative variable Age
.
Here is my data :
res=structure(list(Type_space = structure(c(2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), .Label = c("",
"29-v1", "29-v2", "88-v1", "88-v2"), class = "factor"), Id = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L,
68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 82L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L,
39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L,
52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L,
65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L,
78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L,
91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L,
103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L,
114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L,
125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L,
136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L,
147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L,
158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L,
68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L,
94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L,
69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L,
82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L,
95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L,
106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L,
117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L,
128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L,
139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L,
150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L,
161L, 162L, 163L, 164L), Age = c(3, 10, 1, 5, 4, 2, 1, 8, 2,
13, 1, 6, 3, 5, 2, 1, 3, 8, 3, 6, 1, 3, 7, 1, 2, 2, 2, 1, 2,
5, 4, 1, 6, 3, 6, 8, 2, 3, 4, 7, 3, 2, 6, 2, 3, 7, 1, 5, 4, 1,
4, 3, 2, 3, 5, 5, 2, 1, 1, 5, 8, 7, 2, 2, 4, 3, 4, 4, 2, 2, 10,
7, 5, 3, 3, 5, 7, 5, 3, 4, 5, 4, 1, 8, 6, 1, 12, 1, 6, 3, 4,
4, 13, 5, 2, 7, 7, 20, 1, 1, 1, 7, 1, 4, 3, 8, 2, 2, 4, 1, 1,
2, 3, 2, 2, 6, 11, 2, 5, 5, 9, 4, 4, 2, 7, 2, 7, 10, 6, 9, 2,
2, 5, 11, 1, 8, 8, 4, 1, 2, 14, 11, 13, 20, 3, 3, 4, 16, 2, 6,
11, 9, 11, 4, 5, 6, 19, 5, 2, 6, 1, 7, 11, 3, 9, 2, 3, 6, 20,
8, 6, 2, 11, 18, 9, 3, 7, 3, 2, 1, 8, 3, 5, 6, 2, 5, 8, 11, 4,
9, 7, 2, 12, 8, 2, 9, 5, 4, 15, 5, 13, 5, 10, 13, 7, 6, 1, 12,
12, 10, 4, 2, 16, 7, 17, 11, 18, 4, 3, 12, 1, 3, 7, 3, 6, 5,
11, 10, 12, 6, 14, 8, 6, 7, 8, 5, 10, 12, 6, 13, 3, 11, 14, 7,
9, 9, 4, 13, 4, 2, 1, 2, 2, 1, 7, 9, 3, 10, 3, 2, 1, 3, 1, 4,
2, 4, 5, 4, 2, 13, 4, 1, 3, 1, 11, 4, 1, 3, 3, 7, 5, 4, 5, 6,
1, 2, 1, 2, 1, 6, 1, 7, 6, 9, 5, 1, 6, 3, 2, 3, 3, 8, 8, 3, 2,
2, 4, 2, 5, 2, 6, 8, 11, 1, 6, 3, 3, 4, 5, 5, 7, 4, 2, 7, 3,
3, 1, 3, 9, 5, 2, 4, 12, 1, 4, 5, 2, 7, 6, 1, 2, 6, 4, 2, 7,
3, 5, 5, 3, 7, 1, 5, 2, 1, 15, 3, 5, 2, 5, 13, 6, 2, 3, 5, 2,
8, 4, 2, 6, 7, 2, 4, 1, 13, 8, 2, 1, 2, 1, 1, 5, 2, 1, 6, 11,
4, 1, 7, 7, 4, 3, 5, 1, 4, 10, 1, 2, 6, 1, 11, 3, 8, 9, 2, 6,
8, 11, 14, 16, 4, 1, 4, 2, 1, 10, 4, 9, 3, 12, 8, 11, 8, 8, 5,
1, 4, 13, 3, 8, 5, 14, 3, 5, 5, 12, 1, 3, 4, 5, 2, 7, 6, 9, 6,
10, 5, 2, 3, 2, 10, 10, 10, 10, 10, 1, 14, 3, 5, 9, 6, 2, 2,
2, 4, 4, 11, 14, 2, 2, 2, 8, 7, 2, 10, 12, 1, 6, 10, 2, 3, 5,
10, 6, 1, 8, 4, 11, 5, 4, 3, 6, 2, 4, 6, 9, 3, 9, 11, 7, 3, 15,
3, 7, 3, 5, 4, 6, 9, 13, 8, 5, 7, 8, 8, 5, 10), Type_product = c("f",
"s", "f", "f", "f", "f", "s", "c", "s", "f", "c", "f", "f", "f",
"s", "s", "f", "f", "c", "f", "s", "f", "f", "s", "f", "c", "f",
"f", "s", "f", "f", "c", "f", "c", "f", "f", "f", "f", "f", "c",
"c", "c", "f", "f", "c", "c", "f", "c", "c", "c", "c", "c", "s",
"f", "c", "c", "c", "s", "f", "c", "f", "f", "c", "c", "f", "c",
"c", "c", "f", "c", "c", "c", "c", "c", "c", "c", "f", "c", "c",
"c", "c", "f", "c", "f", "f", "s", "f", "c", "f", "f", "f", "c",
"f", "f", "f", "f", "f", "s", "c", "c", "f", "f", "c", "c", "f",
"f", "c", "c", "f", "f", "s", "f", "c", "c", "f", "f", "f", "c",
"f", "f", "f", "c", "f", "f", "f", "f", "f", "f", "c", "f", "f",
"f", "f", "c", "s", "f", "c", "f", "f", "c", "f", "f", "f", "c",
"f", "c", "c", "c", "f", "f", "f", "f", "c", "c", "c", "f", "f",
"c", "c", "f", "c", "f", "f", "c", "c", "c", "c", "f", "f", "f",
"c", "c", "c", "f", "c", "f", "c", "f", "f", "f", "c", "f", "c",
"c", "c", "c", "c", "f", "c", "c", "c", "c", "c", "c", "c", "f",
"f", "f", "c", "f", "c", "f", "f", "c", "c", "f", "f", "f", "c",
"c", "c", "f", "c", "c", "c", "c", "c", "f", "c", "f", "f", "c",
"c", "f", "c", "f", "c", "f", "c", "c", "c", "f", "c", "c", "c",
"c", "c", "c", "c", "f", "c", "c", "f", "c", "c", "f", "f", "c",
"f", "f", "s", "c", "s", "c", "f", "c", "c", "s", "c", "c", "s",
"c", "m", "c", "c", "f", "f", "f", "f", "f", "f", "s", "f", "f",
"c", "c", "f", "c", "f", "f", "f", "c", "f", "f", "f", "s", "f",
"f", "c", "f", "c", "f", "m", "c", "c", "c", "f", "s", "f", "f",
"f", "c", "s", "c", "m", "f", "c", "m", "c", "f", "c", "f", "f",
"f", "c", "m", "f", "c", "c", "f", "c", "f", "c", "c", "c", "c",
"c", "f", "f", "f", "c", "m", "f", "m", "m", "c", "c", "c", "c",
"m", "m", "c", "f", "m", "m", "m", "m", "m", "m", "m", "m", "m",
"c", "c", "f", "f", "f", "f", "c", "f", "m", "f", "f", "f", "c",
"f", "f", "f", "c", "f", "f", "c", "c", "f", "c", "f", "c", "m",
"f", "c", "f", "c", "f", "f", "f", "f", "c", "c", "f", "f", "c",
"c", "f", "f", "f", "f", "f", "f", "c", "f", "c", "c", "f", "c",
"f", "f", "f", "f", "f", "f", "f", "c", "f", "c", "f", "c", "f",
"c", "f", "c", "f", "f", "c", "c", "c", "c", "c", "f", "f", "f",
"c", "f", "c", "f", "f", "c", "c", "f", "f", "c", "f", "c", "f",
"c", "c", "c", "f", "f", "c", "f", "c", "c", "f", "c", "f", "c",
"f", "c", "f", "c", "m", "c", "c", "m", "c", "c", "f", "c", "c",
"f", "c", "c", "c", "f", "c", "c", "m", "c", "m", "m", "c", "c",
"f", "c", "c", "c", "c", "m", "c", "c", "c", "m", "m", "m", "c",
"c", "c", "c", "m", "m", "f", "m", "m", "m", "m", "m", "m", "m",
"m", "m", "m", "m", "m", "m", "m", "m"), Exhaustion_product = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L), .Label = c("(0,10]", "(10,20]", "(20,30]", "(30,40]", "(40,50]",
"(50,60]", "(60,70]", "(70,80]", "(80,90]", "(90,100]"), class = "factor"),
Type_f = c(1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0,
1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1,
1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1,
1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0,
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1,
1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0)), .Names = c("Type_space", "Id", "Age",
"Type_product", "Exhaustion_product", "Type_f"), row.names = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L,
68L, 69L, 70L, 71L, 73L, 75L, 76L, 79L, 80L, 81L, 82L, 84L, 85L,
86L, 91L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L,
111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L,
122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L,
133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L,
144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L,
155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L,
166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L,
177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L,
188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 197L, 198L, 199L,
201L, 202L, 203L, 204L, 206L, 207L, 208L, 209L, 210L, 212L, 213L,
214L, 215L, 217L, 218L, 219L, 220L, 221L, 222L, 223L, 225L, 227L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L,
242L, 243L, 244L, 246L, 247L, 248L, 249L, 250L, 251L, 253L, 254L,
256L, 259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L, 269L, 270L,
272L, 273L, 274L, 276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L,
284L, 285L, 287L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L,
297L, 298L, 300L, 301L, 302L, 303L, 306L, 308L, 309L, 311L, 312L,
313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L, 322L, 323L, 325L,
326L, 327L, 328L, 329L, 331L, 332L, 334L, 335L, 336L, 338L, 339L,
340L, 341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L, 350L,
352L, 353L, 354L, 356L, 357L, 358L, 359L, 360L, 361L, 363L, 364L,
365L, 366L, 367L, 368L, 369L, 370L, 372L, 373L, 374L, 375L, 376L,
377L, 378L, 379L, 380L, 381L, 382L, 384L, 385L, 387L, 388L, 389L,
391L, 393L, 394L, 395L, 396L, 397L, 398L, 399L, 400L, 401L, 402L,
404L, 407L, 408L, 409L, 411L, 412L, 413L, 414L, 415L, 416L, 417L,
418L, 419L, 420L, 421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L,
429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L, 439L,
440L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L, 450L, 451L,
452L, 453L, 454L, 455L, 456L, 457L, 458L, 459L, 460L, 461L, 462L,
463L, 464L, 465L, 466L, 467L, 468L, 469L, 470L, 471L, 472L, 473L,
474L, 476L, 477L, 478L, 479L, 480L, 481L, 482L, 483L, 484L, 486L,
487L, 488L, 489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L,
498L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L, 509L,
510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L, 520L,
521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L, 530L, 531L,
532L, 534L, 535L, 536L, 537L, 538L, 539L, 540L, 541L, 542L, 543L,
547L, 548L, 550L, 551L, 552L, 553L, 554L, 555L, 556L, 557L, 558L,
559L, 560L, 561L, 562L, 563L, 565L, 566L, 567L, 568L, 569L, 570L,
571L, 572L, 573L, 575L, 577L, 579L, 580L, 581L, 582L, 583L, 585L,
586L, 587L, 590L, 592L, 599L, 606L, 608L), class = "data.frame")
an=Anova(glm(Type_f ~ Type_space + Exhaustion_product + Age , family=binomial,data=res))
gl=glm(Type_f ~ Type_space + Exhaustion_product + Age , family=binomial,data=res)
library("emmeans")
emmp <- emmeans( gl, pairwise ~ Exhaustion_product + Age)
summary( emmp, infer=TRUE)
(1) In the case of categorical variable the results are clear. But in the case of Age which is significant in the GLM, what is the value generated in the emmeans
?5.455426
.Is that is means ? How can I interpret this ?
(0,10] 5.455426 0.36901411 0.2935894 Inf -0.20641061 0.94443883 1.257 0.2088
(2)I want to generate graphic representationof the interaction age
and Exhaustion_product
. Also this do not make sens.
emmip(gl, Exhaustion_product ~ Age)
Edit 1 Contrast result
$contrasts
contrast estimate SE df asymp.LCL asymp.UCL z.ratio p.value
(0,10],5.45542635658915 - (10,20],5.45542635658915 0.33231353 0.4078967 Inf -0.95814279 1.6227698 0.815 0.9984
(0,10],5.45542635658915 - (20,30],5.45542635658915 -0.53694399 0.4194460 Inf -1.86393835 0.7900504 -1.280 0.9582
(0,10],5.45542635658915 - (30,40],5.45542635658915 -0.16100309 0.4139472 Inf -1.47060101 1.1485948 -0.389 1.0000
(0,10],5.45542635658915 - (40,50],5.45542635658915 0.40113723 0.4021403 Inf -0.87110757 1.6733820 0.998 0.9925
(0,10],5.45542635658915 - (50,60],5.45542635658915 0.60576562 0.4106536 Inf -0.69341247 1.9049437 1.475 0.9022
(0,10],5.45542635658915 - (60,70],5.45542635658915 1.38800301 0.4319258 Inf 0.02152631 2.7544797 3.214 0.0430
(0,10],5.45542635658915 - (70,80],5.45542635658915 1.01677522 0.4147441 Inf -0.29534399 2.3288944 2.452 0.2952
(0,10],5.45542635658915 - (80,90],5.45542635658915 1.99085692 0.4747929 Inf 0.48876247 3.4929514 4.193 0.0011
(0,10],5.45542635658915 - (90,100],5.45542635658915 2.03923289 0.4745872 Inf 0.53778910 3.5406767 4.297 0.0007
Because this question seems like a self-learning one, I am going to do a similar example, not the same data. But the structure is the same, with one factor and one covariate as predictors.
The example is the emmeans::fiber
dataset. Its response variable is fiber strength, the continuous predictor is the diameter, and the factor is the machine it was made on.
Model:
> mod = glm(log(strength) ~ machine + diameter, data = fiber)
> summary(mod)
... (output has been abbreviated) ...
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.124387 0.068374 45.695 6.74e-14
machineB 0.026025 0.023388 1.113 0.290
machineC -0.044593 0.025564 -1.744 0.109
diameter 0.023557 0.002633 8.946 2.22e-06
(Dispersion parameter for gaussian family taken to be 0.001356412)
Analysis with emmeans is based on the reference grid, which by default consists of all levels of the factor and the mean of the covariate:
> ref_grid(mod)
'emmGrid' object with variables:
machine = A, B, C
diameter = 24.133
Transformation: “log”
You can confirm in R that mean(fiber$diameter)
is 24.133. I emphasize this is the mean of the diameter values, not of anything in the model.
> summary(.Last.value)
machine diameter prediction SE df
A 24.13333 3.692901 0.01670845 Inf
B 24.13333 3.718925 0.01718853 Inf
C 24.13333 3.648307 0.01819206 Inf
Results are given on the log (not the response) scale.
Those summary values are the predictions from mod
at each combination of machine
and diameter
. Now look at EMMs for machine
> emmeans(mod, "machine")
machine emmean SE df asymp.LCL asymp.UCL
A 3.692901 0.01670845 Inf 3.660153 3.725649
B 3.718925 0.01718853 Inf 3.685237 3.752614
C 3.648307 0.01819206 Inf 3.612652 3.683963
Results are given on the log (not the response) scale.
Confidence level used: 0.95
... we get exactly the same three predictions. But if we look at diameter
:
> emmeans(mod, "diameter")
diameter emmean SE df asymp.LCL asymp.UCL
24.13333 3.686711 0.009509334 Inf 3.668073 3.705349
Results are averaged over the levels of: machine
Results are given on the log (not the response) scale.
Confidence level used: 0.95
... we get the EMM is equal to the average of the three predicted values in the reference grid. And note that it says in the annotations that results were averaged over machine
, so it is worth reading that.
To get a graphical representation of the model results, we can do
> emmip(mod, machine ~ diameter, cov.reduce = range)
The argument cov.reduce = range
is added to cause the reference grid to use the min and max diameter, rather than its average. Without that, we'd have gotten three dots instead of three lines. This plot still shows the model predictions, just over a more detailed grid of values. Notice that all three lines have the same slope. That is vbecause the model was specified that way: the diameter
effect is added to the machine
effect. Each line thus has the common slope of 0.023557 (see the output from summary(mod)
.
There is no post hoc test needed for diameter
, since its one effect is already tested in summary(mod)
.
One last thing. The model used log(strength)
as the response. If we want the EMMs on the same scale as strength
, just add type = "response"
:
> emmeans(mod, "machine", type = "response")
machine response SE df asymp.LCL asymp.UCL
A 40.16118 0.6710311 Inf 38.86728 41.49815
B 41.22008 0.7085126 Inf 39.85455 42.63239
C 38.40960 0.6987496 Inf 37.06421 39.80384
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Again, the annotations below the results help explain the output.