I am Dockerising an old project. A feature in the project pulls in user-specified Git repos, and since the size of a repo could cause the filing system to be overwhelmed, I created a local filing system of a fixed size, and then mounted it. This was intended to prevent the web host from having its file system filled up.
The general approach is this:
IMAGE=filesystem/image.img
MOUNT_POINT=filesystem/mount
SIZE=20
PROJECT_ROOT=`pwd`
# Number of M to set aside for this filing system
dd if=/dev/zero of=$IMAGE bs=1M count=$SIZE &> /dev/null
# Format: the -F permits creation even though it's not a "block special device"
mkfs.ext3 -F -q $IMAGE
# Mount if the filing system is not already mounted
$MOUNTCMD | cut -d ' ' -f 3 | grep -q "^${PROJECT_ROOT}/${MOUNT_POINT}$"
if [ $? -ne 0 ]; then
# -p Create all parent dirs as necessary
mkdir -p $MOUNT_POINT
/bin/mount -t ext3 $IMAGE $MOUNT_POINT
fi
This works fine in a Linux local or remote VM. However, I'd like to run this shell code, or something like it, inside a container. Part of the reason I'd like to do that is to contain all fiddly stuff inside a container, so that building a new host machine is as kept as simple as possible (in my view, setting up custom mounts and cron-restart rules on the host works against that).
So, this command does not work inside a container ("filesystem" is an on-host Docker volume)
mount -t ext3 filesystem/image.img filesystem/mount
mount: can't setup loop device: No space left on device
It also does not work on a container folder ("filesystem2" is a container directory):
dd if=/dev/zero of=filesystem2/image.img bs=1M count=20
mount -t ext3 filesystem2/image.img filesystem2/mount
mount: can't setup loop device: No space left on device
I wonder whether containers just don't have the right internal machinery to do mounting, and thus whether I should change course. I'd prefer not to spend too much time on this (I'm just moving a project to a Docker-only server) which is why I would like to get mount
working if I can.
If that's not possible, then a size-limited Docker volume, that works with both Docker and Swarm, may be an alternative I'd need to look into. There are conflicting reports on the web as to whether this actually works (see this question).
There is a suggestion here to say this is supported in Flocker. However, I am hesitant to use that, as it appears to be abandoned, presumably having been affected by ClusterHQ going bust.
This post indicates I can use --storage-opt size=120G
with docker run
. However, it does not look like it is supported by docker service create
(unless perhaps the option has been renamed).
As per the comment convo, I made some progress; I found that adding --privileged
to the docker run
enables mounting, at the cost of removing security isolation. A helpful commenter says that it is better to use the more fine-grained control of --cap-add SYS_ADMIN
, allowing the container to retain some of its isolation.
However, Docker Swarm has not yet implemented either of these flags, so I can't use this solution. This lengthy feature request suggests to me that this feature is not going to be added in a hurry; it's been pending for two years already.
You won't be able to safely do this inside of a container. Docker removes the mount privilege from containers because using this you could mount the host filesystem and escape the container. However, you can do this outside of the container and mount the filesystem into the container as a volume using the default local driver. The size option isn't supported by most filesystems, tmpfs being one of the few exceptions. Most of them use the size of the underlying device which you defined with the image file creation command:
dd if=/dev/zero of=filesystem/image.img bs=1M count=$SIZE
I had trouble getting docker to create the loop device dynamically, so here's the process to create it manually:
$ sudo losetup --find --show ./vol-image.img
/dev/loop0
$ sudo mkfs -t ext3 /dev/loop0
mke2fs 1.43.4 (31-Jan-2017)
Creating filesystem with 10240 1k blocks and 2560 inodes
Filesystem UUID: 25c95fcd-6c78-4b8e-b923-f808517b28df
Superblock backups stored on blocks:
8193
Allocating group tables: done
Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done
When defining the volume mount options are passed almost verbatim from the mount command you run on the command line:
docker volume create --driver local --opt type=ext3 \
--opt device=filesystem/image.img app_vol
docker service create --mount type=volume,src=app_vol,dst=/filesystem/mount ...
or in a single service create command:
docker service create \
--mount type=volume,src=app_vol,dst=/filesystem/mount,volume-driver=local,volume-opt=type=ext3,volume-opt=device=filesystem/image.img ...
With docker run
, the command looks like:
$ docker run -it --rm --mount type=volume,dst=/data,src=ext3vol,volume-driver=local,volume-opt=type=ext3,volume-opt=device=/dev/loop0 busybox /bin/sh
/ # ls -al /data
total 17
drwxr-xr-x 3 root root 1024 Sep 19 14:39 .
drwxr-xr-x 1 root root 4096 Sep 19 14:40 ..
drwx------ 2 root root 12288 Sep 19 14:39 lost+found
The only prerequisite is that you create this file and loop device before creating the service, and that this file is accessible wherever the service is scheduled. I would also suggest making all of the paths in these commands fully qualified rather than relative to the current directory. I'm pretty sure there are a few places that relative paths don't work.