I want to run a code with process parallel to my main code but also want to access its parameters or start/stop the process via command prompt.
my machine is win7 64bit. Something in mind is:
from multiprocessing import Process
class dllapi():
...
def apiloop(params, args):
apiclient = dllapi(**args)
while True:
apiclient.cycle()
params = [....]
def mainloop(args):
p = Process(target = apiloop, args=(params, args, ))
while True:
cmd = input()
if cmd == 'kill':
p.terminate()
if cmd == 'stop':
pass # no idea
if cmd == 'resume':
pass # no idea
if cmd == 'report':
print (params)
I wish to make it simple. I did tried to make apiloop as thread yet input() could freeze the program and stopped apiloop working until i pressed enter...
To share the parameters from apiloop process, i did try queue and pipe, but, seem to me, queue needs .join to wait until apiloop is done and pipe has buffer limit.
(actually i can make apiclient.cycle runs every 1s but i wish to keep apiclient alive)
I wish to know if it's worth to dig deeper with multiprocessing (e.g. will try manager as well...) or there are other approaches which is more suitable for my case. Thanks in advance...
* UPDATED: 201809170953*
Some progress with manager as below:
from multiprocessing import Process, Manager
class dllapi():
...
class webclientapi():
...
def apiloop(args, cmd, params):
apiclient = dllapi(**args)
status = True
while True:
# command from main
if cmd == 'stop':
status = False
elif cmd == 'start':
status = True
cmd = None
# stop or run
if status == True:
apiclient.cycle()
# update parameters
params['status'] = status
def uploadloop(cmds, params):
uploadclient = webclientapi()
status = True
while True:
# command from main
if cmd == 'stop':
status = False
elif cmd == 'start':
status = True
cmd = None
# stop or run
if status == True:
# upload 'status' from apiclient to somewhere
uploadclient.cycle(params['status'])
def mainloop(args):
manager = Manager()
mpcmds = {}
mpparams = {}
mps = {}
mpcmds ['apiloop'] = manager.Value('u', 'start')
mpparams ['apiloop'] = manager.dict()
mps ['apiloop'] = Process(target = apiloop, args=(args, mpcmds['apiloop'], mpparams['apiloop'])
mpcmds ['uploadloop'] = manager.Value('u', 'start')
# mpparams ['uploadloop'] is directly from mpparams ['apiloop']
mps ['uploadloop'] = Process(target = uploadloop, args=(mpcmds['uploadloop'], mpparams['apiloop'])
for key, mp in mps.items():
mp.daemon = True
mp.start()
while True:
cmd = input().split(' ')
# kill daemon process with exit()
if cmd[0] == 'bye':
exit()
# kill individual process
if cmd[0] == 'kill':
mps[cmd[1]].terminate()
# stop individual process via command
if cmd[0] == 'stop':
mpcmds[cmd[1]] = 'stop'
# stop individual process via command
if cmd[0] == 'start':
mpcmds[cmd[1]] = 'start'
# report individual process info via command
if cmd[0] == 'report':
print (mpparams ['apiloop'])
Hope this'd help someone.
I'm showing you how to solve the general problem with threads only, because that is what you tried first and your example doesn't bring up the need for a child-process.
In the example below your dllapi class is named Zoo
and it's subclassing threading.Thread
, adding some methods to allow execution control. It takes some data
upon initialization and its cycle
-method simply iterates repeatedly over this data and just counts how many times it has seen the specific item.
import time
import logging
from queue import Queue
from threading import Thread
from itertools import count, cycle
class Zoo(Thread):
_ids = count(1)
def __init__(self, cmd_queue, data, *args,
log_level=logging.DEBUG, **kwargs):
super().__init__()
self.name = f'{self.__class__.__name__.lower()}-{next(self._ids)}'
self.data = data
self.log_level = log_level
self.args = args
self.kwargs = kwargs
self.logger = self._init_logging()
self.cmd_queue = cmd_queue
self.data_size = len(data)
self.actual_item = None
self.iter_cnt = 0
self.cnt = count(1)
self.cyc = cycle(self.data)
def cycle(self):
item = next(self.cyc)
if next(self.cnt) % self.data_size == 0: # new iteration round
self.iter_cnt += 1
self.actual_item = f'{item}_{self.iter_cnt}'
def run(self):
"""
Run is the main-function in the new thread. Here we overwrite run
inherited from threading.Thread.
"""
while True:
if self.cmd_queue.empty():
self.cycle()
time.sleep(1) # optional heartbeat
else:
self._get_cmd()
self.cmd_queue.task_done() # unblocks prompter
def stop(self):
self.logger.info(f'stopping with actual item: {self.actual_item}')
# do clean up
raise SystemExit
def pause(self):
self.logger.info(f'pausing with actual item: {self.actual_item}')
self.cmd_queue.task_done() # unblocks producer joining the queue
self._get_cmd() # just wait blockingly until next command
def resume(self):
self.logger.info(f'resuming with actual item: {self.actual_item}')
def report(self):
self.logger.info(f'reporting with actual item: {self.actual_item}')
print(f'completed {self.iter_cnt} iterations over data')
def _init_logging(self):
fmt = '[%(asctime)s %(levelname)-8s %(threadName)s' \
' %(funcName)s()] --- %(message)s'
logging.basicConfig(format=fmt, level=self.log_level)
return logging.getLogger()
def _get_cmd(self):
cmd = self.cmd_queue.get()
try:
self.__class__.__dict__[cmd](self)
except KeyError:
print(f'Command `{cmd}` is unknown.')
input
is a blocking function. You need to outsource it in a separate thread so it doesn't block your main-thread. In the example below input
is wrapped in Prompter
, a class subclassing threading.Thread. Prompter
passes inputs into a command-queue. This command-queue is read by Zoo
.
class Prompter(Thread):
"""Prompt user for command input.
Runs in a separate thread so the main-thread does not block.
"""
def __init__(self, cmd_queue):
super().__init__()
self.cmd_queue = cmd_queue
def run(self):
while True:
cmd = input('prompt> ')
self.cmd_queue.put(cmd)
self.cmd_queue.join() # blocks until consumer calls task_done()
if __name__ == '__main__':
data = ['ape', 'bear', 'cat', 'dog', 'elephant', 'frog']
cmd_queue = Queue()
prompter = Prompter(cmd_queue=cmd_queue)
prompter.daemon = True
zoo = Zoo(cmd_queue=cmd_queue, data=data)
prompter.start()
zoo.start()
Example session in terminal:
$python control_thread_over_prompt.py
prompt> report
[2018-09-16 17:59:16,856 INFO zoo-1 report()] --- reporting with actual item: dog_0
completed 0 iterations over data
prompt> pause
[2018-09-16 17:59:26,864 INFO zoo-1 pause()] --- pausing with actual item: bear_2
prompt> resume
[2018-09-16 17:59:33,291 INFO zoo-1 resume()] --- resuming with actual item: bear_2
prompt> report
[2018-09-16 17:59:38,296 INFO zoo-1 report()] --- reporting with actual item: ape_3
completed 3 iterations over data
prompt> stop
[2018-09-16 17:59:42,301 INFO zoo-1 stop()] --- stopping with actual item: elephant_3