Search code examples
pythonnumpycontinuous-fourier

Fourier Transform Using Numpy


I'm trying to calculate the Fourier Transform of the following Gaussian:

# sample spacing
dx = 1.0 / 1000.0

# Points
x1 = -5
x2 = 5

x = np.arange(x1, x2, dx)

def light_intensity():
    return 10*sp.stats.norm.pdf(x, 0, 1)+0.1*np.random.randn(x.size)

fig, ax = plt.subplots()
ax.plot(x,light_intensity())

enter image description here

I create a new array in the spacial frequency domain (Fourier Transform of Gaussian is a Gaussian so these values should be similar). I plot and get this:

fig, ax = plt.subplots()

xf = np.arange(x1,x2,dx)
yf= np.fft.fftshift(light_intensity())
ax.plot(xf,np.abs(yf))

enter image description here

Why is it splitting into two peaks?


Solution

  • Advice:

    • use np.fft.fft
    • fft starts at 0 Hz
    • normalize/rescale

    Complete example:

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.stats import norm
    
    def norm_fft(y, T, max_freq=None):
        N = y.shape[0]
        Nf = N // 2 if max_freq is None else int(max_freq * T)
        xf = np.linspace(0.0, 0.5 * N / T, N // 2)
        yf = 2.0 / N * np.fft.fft(y)
        return xf[:Nf], yf[:Nf]
    
    def generate_signal(x, signal_gain=10.0, noise_gain=0.0):
        signal = norm.pdf(x, 0, 1)
        noise = np.random.randn(x.size)
        return signal_gain * signal + noise_gain * noise
    
    # Signal parameters
    x1 = 0.0
    x2 = 5.0
    N = 10000
    T = x2 - x1
    
    # Generate signal data
    x = np.linspace(x1, x2, N)
    y = generate_signal(x)
    
    # Apply FFT
    xf, yf = norm_fft(y, T, T / np.pi)
    
    # Plot
    fig, ax = plt.subplots(2)
    ax[0].plot(x, y)
    ax[1].plot(xf, np.abs(yf))
    plt.show()
    

    Time domain, Frequency domain

    Or, with noise:

    Noise


    Plots with symmetry

    Alternatively, if you want to enjoy the symmetry in the frequency domain:

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.stats import norm
    
    def norm_sym_fft(y, T, max_freq=None):
        N = y.shape[0]
        b = N if max_freq is None else int(max_freq * T + N // 2)
        a = N - b
        xf = np.linspace(-0.5 * N / T, 0.5 * N / T, N)
        yf = 2.0 / N * np.fft.fftshift(np.fft.fft(y))
        return xf[a:b], yf[a:b]
    
    def generate_signal(x, signal_gain=10.0, noise_gain=0.0):
        signal = norm.pdf(x, 0, 1)
        noise = np.random.randn(x.size)
        return signal_gain * signal + noise_gain * noise
    
    # Signal parameters
    x1 = -10.0
    x2 = 10.0
    N = 10000
    T = x2 - x1
    
    # Generate signal data
    x = np.linspace(x1, x2, N)
    y = generate_signal(x)
    
    # Apply FFT
    xf, yf = norm_sym_fft(y, T, 4 / np.pi)
    
    # Plot
    fig, ax = plt.subplots(2)
    ax[0].plot(x, y)
    ax[1].plot(xf, np.abs(yf))
    plt.show()
    

    Sym

    Or, with noise:

    Noise sym