I'm using naive Bayes for text classification and I have 100k records in which 88k are positive class records and 12krecords are negative class records. I converted sentences to unigrams and bigrams using countvectorizer and I took alpha range from [0,10] with 50 values and I draw the plot.
In Laplace additive smoothing, If I keep increasing the alpha value then accuracy on the cross-validation dataset also increasing. My question is is this trend expected or not?
If you keep increasing the alpha value then naive bayes model will bias towards the class which has more records and model becomes a dumb model(underfitting) so by choosing small alpha value is good idea.