I have the following code in pyspark, resulting in a table showing me the different values for a column and their counts. I want to have another column showing what percentage of the total count does each row represent. How do I do that?
difrgns = (
df1
.groupBy("column_name")
.count()
.sort(desc("count"))
.show()
)
An example as an alternative if not comfortable with Windowing as the comment alludes to and is the better way to go:
# Running in Databricks, not all stuff required
from pyspark.sql import Row
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
data = [
("A", "X", 2, 100),
("A", "X", 7, 100),
("B", "X", 10, 100),
("C", "X", 1, 100),
("D", "X", 50, 100),
("E", "X", 30, 100),
]
rdd = sc.parallelize(data)
schema = rdd.map(lambda x: Row(c1=x[0], c2=x[1], val1=int(x[2]), val2=int(x[3])))
df = sqlContext.createDataFrame(schema)
tot = df.count()
(
df
.groupBy("c1")
.count()
.withColumnRenamed('count', 'cnt_per_group')
.withColumn('perc_of_count_total', (F.col('cnt_per_group') / tot) * 100 )
.show()
)
Which returns:
+---+-------------+-------------------+
| c1|cnt_per_group|perc_of_count_total|
+---+-------------+-------------------+
| E| 1| 16.666666666666664|
| B| 1| 16.666666666666664|
| D| 1| 16.666666666666664|
| C| 1| 16.666666666666664|
| A| 2| 33.33333333333333|
+---+-------------+-------------------+
I focus on Scala and it seems easier with that. That said, the suggested solution via the comments uses Window which is what I would do in Scala with over()
.