I'm trying to create a pivot table that has, besides the general total, a subtotal between each row level.
I created my df.
import pandas as pd
df = pd.DataFrame(
np.array([['SOUTH AMERICA', 'BRAZIL', 'SP', 500],
['SOUTH AMERICA', 'BRAZIL', 'RJ', 200],
['SOUTH AMERICA', 'BRAZIL', 'MG', 150],
['SOUTH AMERICA', 'ARGENTINA', 'BA', 180],
['SOUTH AMERICA', 'ARGENTINA', 'CO', 300],
['EUROPE', 'SPAIN', 'MA', 400],
['EUROPE', 'SPAIN', 'BA', 110],
['EUROPE', 'FRANCE', 'PA', 320],
['EUROPE', 'FRANCE', 'CA', 100],
['EUROPE', 'FRANCE', 'LY', 80]], dtype=object),
columns=["CONTINENT", "COUNTRY","LOCATION","POPULATION"]
)
After that i created my pivot table as shown bellow
table = pd.pivot_table(df, values=['POPULATION'], index=['CONTINENT', 'COUNTRY', 'LOCATION'], fill_value=0, aggfunc=np.sum, dropna=True)
table
To do the subtotal i started sum CONTINENT level
tab_tots = table.groupby(level='CONTINENT').sum()
tab_tots.index = [tab_tots.index, ['Total'] * len(tab_tots)]
And concatenated with my first pivot to get subtotal.
pd.concat([table, tab_tots]).sort_index()
How can i get the values separated in level like the first table?
I'm not finding a way to do this.
IIUC:
contotal = table.groupby(level=0).sum().assign(COUNTRY='TOTAL', LOCATION='').set_index(['COUNTRY','LOCATION'], append=True)
coutotal = table.groupby(level=[0,1]).sum().assign(LOCATION='TOTAL').set_index(['LOCATION'], append=True)
df_out = (pd.concat([table,contotal,coutotal]).sort_index())
df_out
Output:
POPULATION
CONTINENT COUNTRY LOCATION
EUROPE FRANCE CA 100
LY 80
PA 320
TOTAL 500
SPAIN BA 110
MA 400
TOTAL 510
TOTAL 1010
SOUTH AMERICA ARGENTINA BA 180
CO 300
TOTAL 480
BRAZIL MG 150
RJ 200
SP 500
TOTAL 850
TOTAL 1330