Search code examples
rrnoaa

Meteo_pull_monitors for mean climate data by lat/long


I have a dataframe of latitudes, longitudes, start years and end years. I want mean precipitation for each location for that period.

Right now, I can get this for one location at a time, but I want to automate the following for multiple locations:

Here are some prerequisites:

#library(xts)
#library(rnoaa)
#options(noaakey = "...") # https://ropensci.org/blog/2014/03/13/rnoaa/ says how to get a API key
#station_data <- ghcnd_stations() # Takes a while to run
statenv <- new.env()
lat_lon_df<-structure(list(lat = c(41.1620277777778, 44.483333, 44.066667
), long = c(-96.4115, -92.533333, -93.5), yrmin = c(2001L, 1983L, 
                                                    1982L), yrmax = c(2010L, 1990L, 1992L), id = c("ithaca", "haycreek", 
                                                                                                   "waseca")), class = "data.frame", row.names = c(1389L, 1395L, 
                                                                                                                                                   1403L))

And here is the meat.

ll_df<-lat_lon_df[1,]
nearby_station<-meteo_nearby_stations(lat_lon_df = ll_df,
    lat_colname = "lat", lon_colname = "long",
    station_data = station_data, radius = 50, year_min=ll_df[1,"yrmin"],
    year_max=ll_df[1,"yrmax"],limit=1, var="PRCP")


nearby_station<-meteo_nearby_stations(lat_lon_df = ll_df,lat_colname = "lat", lon_colname = "long",
                                          station_data = station_data, radius = 50, year_min=ll_df[1,"yrmin"],
                                          year_max=ll_df[1,"yrmin"],limit=1, var="PRCP")
e <- lapply(nearby_station,function(x)  meteo_pull_monitors(x$id[1])) #get actual data based on monitor id's

ll<-xts(e[[1]]$prcp,order.by=e[[1]]$date)
x<-paste0(ll_df[1,"yrmin"],"/",ll_df[1,"yrmax"]) 
 mean(xts::apply.yearly(na.omit(ll[x]),sum))/10 #divide by 10, put in mm

This returns 776.23. End result should be a dataframe that now has a new column "precip" like this:

     lat      long yrmin yrmax       id    precip
41.16203 -96.41150  2001  2010   ithaca    776.23
44.48333 -92.53333  1983  1990 haycreek    829.65
44.06667 -93.50000  1982  1992   waseca    894.62

There has to be a way to get this to simply repeat by row of lat_long_df, i.e for lat_lon_df[1,], then lat_lon_df[2,], and finally lat_lon_df[3,].


Solution

  • One approach would be to apply a custom function over the rows of lat_lon_df.

    Here is an example:

    library(xts)
    library(rnoaa)
    

    Set the API key

    #options(noaakey = "...") # https://ropensci.org/blog/2014/03/13/rnoaa/ says how to get a API key
    
    station_data <- ghcnd_stations() #meta-information about all available GHCND weather stations
    

    Now apply all the steps you described within an apply call

    out <- apply(lat_lon_df, 1, function(x){
      min_year <- x[3] #extract the needed values min_year, max_year and ll_df
      max_year <- x[4] 
      ll_df <- data.frame(lat = as.numeric(x[1]),
                          long = as.numeric(x[2]),
                          id = x[5])
      nearby_station <- meteo_nearby_stations(lat_lon_df = ll_df,
                                              lat_colname = "lat",
                                              lon_colname = "long",
                                              station_data = station_data,
                                              radius = 50,
                                              year_min = min_year,
                                              year_max = max_year,
                                              limit=1,
                                              var="PRCP")
      res <- lapply(nearby_station, function(y) {
        res <- meteo_pull_monitors(y[1]$id)
        }
        )
      ll <- xts(res[[1]]$prcp, order.by=res[[1]]$date)
      x <- paste0(min_year <- x[3],"/",max_year) 
      mean(xts::apply.yearly(na.omit(ll[x]),sum))/10
    }
    )
    
    data.frame(lat_lon_df, precip = out)
    #output
              lat      long yrmin yrmax       id   precip
    1389 41.16203 -96.41150  2001  2010   ithaca 776.2300
    1395 44.48333 -92.53333  1983  1990 haycreek 829.6500
    1403 44.06667 -93.50000  1982  1992   waseca 894.6273
    

    Do note that when yrmin and yrmax do not change one can just get the needed info by using meteo_nearby_stations on lat_lon_df.

    You can also define this as a named function

    get_mean_precip <- function(x){
      min_year <- x[3]
      max_year <- x[4]
      ll_df <- data.frame(lat = as.numeric(x[1]),
                          long = as.numeric(x[2]),
                          id = x[5])
      nearby_station <- rnoaa::meteo_nearby_stations(lat_lon_df = ll_df,
                                                     lat_colname = "lat",
                                                     lon_colname = "long",
                                                     station_data = station_data,
                                                     radius = 50,
                                                     year_min = min_year,
                                                     year_max = max_year,
                                                     limit=1,
                                                     var = "PRCP")
      res <- lapply(nearby_station, function(y) {
        res <- rnoaa::meteo_pull_monitors(y[1]$id)
      }
      )
      ll <- xts::xts(res[[1]]$prcp, order.by=res[[1]]$date)
      x <- paste0(min_year <- x[3],"/",max_year) 
      mean(xts::apply.yearly(na.omit(ll[x]),sum))/10
    }
    

    and use it as:

    out <- apply(lat_lon_df, 1, get_mean_precip)