Search code examples
idristheorem-provingelaboration

Proof generated interactively with :elab doesn't work


I'm trying to prove following statement with the interactive proof assistant:

total
concatAssoc : (x : List a) -> (y : List a) -> (z : List a) -> (x ++ y) ++ z = x ++ (y ++ z)
concatAssoc = ?h

I understand how it can be proven without elaborator reflection:

concatAssoc [] _ _ = Refl
concatAssoc (_ :: x) y z = cong $ concatAssoc x y z

However, I'm just curious why I have an issue with proving this statement interactively in REPL. Here is what I did:

:elab h
x <- gensym "x"
_base <- gensym "_base"
intro'
intro x
repeatUntilFail intro'
induction (Var x)
search
compute
attack
intro'
intro'
intro _base
rewriteWith (Var _base)
reflexivity
solve
:qed

Here's what I got:

...
-Main.h> solve
h: No more goals.
-Main.h> :qed
Proof completed!
Main.h = %runElab (do x <- gensym "x"
                      _base <- gensym "_base"
                      intro'
                      intro x
                      repeatUntilFail intro'
                      induction (Var x)
                      search
                      compute
                      attack
                      intro'
                      intro'
                      intro _base
                      rewriteWith (Var _base)
                      reflexivity
                      solve)

After that I substituted the function body with this proof:

import Pruviloj.Core
import Pruviloj.Induction
import Language.Reflection.Elab

total
concatAssoc : (x : List a) -> (y : List a) -> (z : List a) -> (x ++ y) ++ z = x ++ (y ++ z)
concatAssoc = %runElab (do x <- gensym "x"
                           _base <- gensym "_base"
                           intro'
                           intro x
                           repeatUntilFail intro'
                           induction (Var x)
                           search
                           compute
                           attack
                           intro'
                           intro'
                           intro _base
                           rewriteWith (Var _base)
                           reflexivity
                           solve)

However, when I tried to compile it, I got following error:

>idris 1.idr -p contrib -p pruviloj -X ElabReflection
Type checking .\1.idr
1.idr:9:16-23:34:
  |
9 | concatAssoc =  %runElab (do x <- gensym "x"
  |                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...
When checking right hand side of concatAssoc with expected type
        (x : List a) -> (y : List a) -> (z : List a) -> (x ++ y) ++ z = x ++ y ++ z

Can't find a value of type
        (x ++ []) ++ z = x ++ z

Holes: Main.concatAssoc

So my question is why the same proof works in REPL, but fails if written in a file?


Solution

  • There seem to be an issue with the way REPL treats implicits in the :elab mode.

    Idris> :l ElabDoesNotWork.idr
    Holes: Main.h
    *ElabDoesNotWork> :elab h
    
    
    ----------                 Goal:                  ----------
    {hole_0} : (a : Type) -> (x : List a) -> (y : List a) -> (z : List a) -> (x ++ y) ++ z = x ++ y ++ z
    -Main.h>
    

    Here REPL kind of asks us to do intro on (a : Type), but when compiling the module the type variable is implicit and we don't have to introduce it.

    The workaround here is to remove the offending intro:

    import Pruviloj.Core
    import Pruviloj.Induction
    
    concatAssoc : (xs, ys, zs : List a) -> (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
    concatAssoc = %runElab (do intro `{{xs}}
                               intro `{{ys}}
                               intro `{{zs}}
                               induction (Var `{{xs}})
                               compute
                               reflexivity
                               compute
                               attack
                               intro `{{x}}
                               intro `{{xs'}}
                               intro `{{IH}}
                               rewriteWith (Var `{{IH}})
                               reflexivity
                               solve)