I have no real experience with GIS data, so when what I believed to be a simple problem has turned out to have more subtleties to it, I am dangerously unprepared!
I want to be able to classify a GPS position as inside/outside a polygon defined by GPS co-ordinates. It turns out this is the well-known (but not to me) point-in-polygon problem. I have read many questions/answers on https://gis.stackexchange.com/ (and here e.g. this).
Shapely seems a good solution, but assumes the co-ordinates are on the same cartesian plane, i.e. not GPS? So I would first need to transform my GPS points to UTM points.
Do I need to introduce this extra step, however, if the points being compared (i.e. the point and the polygon) are always going to be naturally within the same UTM zone. They should always be within the same town/city, so can I just leave them as GPS and use the lat/long co-ordinates in Shapely?
I also came across this UTM-WGS84 converter so I could convert my lat/long pairs using this package, and then use those UTM pairs in Shapely, but I would like to avoid any extra dependencies where possible.
Point-in-polygon already assumes a 2D restriction, and GPS coordinates are 3D. Right away, that gets you in trouble.
A simple workaround is to discard the GPS height, reducing it to 2D surface coordinates. Your next problem is that that your 2D surface is now a sphere. On a spherical surface, a polygon divides the surface in two parts, but there is no obvious "inside". There's a left-hand side and a right-hand side which follows from the order of points in the polygon, but neither side is the obvious "inside". Consider the equator as a trivial polygon - which hemisphere is "inside" the equator?
Next up is the issue of the polygon edges. By definition, these are straight, i.e. line segments. But lines on a spherical surface are weird - they're generally known as great circles. And any two great circles cross in exactly two points. That's not how cartesian lines behave. Worse, the equations for a great circle are not linear when expressed in GPS coordinates, because those are longitude/latitude pairs.
I can imagine that at this point you're feeling a bit confused. You might want to look at this from another side - we have a similar problem with maps. Globe maps are by definition attempts to flatten that non-flat surface. Since that's not exactly possible, you end up with map projections. You can also project the corner points of your polygons on such projections. And because the projections are flat, you can draw the edges on the projection. You now see the problem visually: On two different projections, identical polygons will contain different parts of the world!
So, since we agreed that in the real world, the edges of the polygons are great circles, we should really consider a projection that keeps the great circles straight. There's exactly one family of projections that has this property, and that's the Gnomonic projection. It's a family of projections because you can pick any point as the center.
As it happens, we have one natural point to consider here: the GPS point we're considering. If you put that in the center, draw a gnomonic projection around it, project the polygon edges, and then draw the polygon, you have an exact solution.
Except that the actual earth isn't spherical. Sorry. How exact did you need the test to be, anyway?