Following issue: In a client/server environment with Spring-Boot
and Kotlin
the client wants to create objects of type A and therefore posts the data through a RESTful endpoint to the server.
Entity A is realized as a data class
in Kotlin like this:
data class A(val mandatoryProperty: String)
Business-wise that property (which is a primary key, too) must never be null. However, it is not known by the client, as it gets generated quite expensively by a Spring @Service Bean on the server.
Now, at the endpoint Spring tries to deserialize the client's payload into an object of type A, however, the mandatoryProperty
is unknown at that point in time, which would result in a mapping exception.
Several ways to circumvent that problem, none of which really amazes me.
Don't expect an object of type A at the endpoint, but get a bunch of parameters describing A that are passed on until the entity has actually been created and mandatoryProperty is present . Quite cumbersome actually, since there are a lot more properties than just that single one.
Quite similar to 1, but create a DTO. One of my favorites, however, since data classes
can't be extended it would mean to duplicate the properties of type A into the DTO (except for the mandatory property) and copy them over. Furthemore, when A grows, the DTO has to grow, too.
Make mandatoryProperty nullable and work with !! operator throughout the code. Probably the worst solution as it foils the sense of nullable and non-nullable variables.
The client would set a dummy value for the mandatoryProperty which is replaced as soon as the property has been generated. However, A is validated by the endpoint and therefore the dummy value must obey its @Pattern
constraint. So each dummy value would be a valid primary key, which gives me a bad feeling.
Any other ways I might have overseen that are more feasible?
I don't think there is a general-purpose answer to this... So I will just give you my 2 cents regarding your variants...
Your first variant has a benefit which no other really has, i.e. that you will not use the given objects for anything else then they were designed to be (i.e. endpoint or backend purposes only), which however probably will lead to cumbersome development.
The second variant is nice, but could lead to some other development errors, e.g. when you thought you used the actual A
but you were rather operating on the DTO instead.
Variant 3 and 4 are in that regard similar to 2... You may use it as A
even though it has all the properties of a DTO only.
So... if you want to go the safe route, i.e. no one should ever use this object for anything else then its specific purpose you should probably use the first variant. 4 sounds rather like a hack. 2 & 3 are probably ok. 3 because you actually have no mandatoryProperty
when you use it as DTO...
Still, as you have your favorite (2) and I have one too, I will concentrate on 2 & 3, starting with 2 using a subclass approach with a sealed class
as supertype:
sealed class AbstractA {
// just some properties for demo purposes
lateinit var sharedResettable: String
abstract val sharedReadonly: String
}
data class A(
val mandatoryProperty: Long = 0,
override val sharedReadonly: String
// we deliberately do not override the sharedResettable here... also for demo purposes only
) : AbstractA()
data class ADTO(
// this has no mandatoryProperty
override val sharedReadonly: String
) : AbstractA()
Some demo code, demonstrating the usage:
// just some random setup:
val a = A(123, "from backend").apply { sharedResettable = "i am from backend" }
val dto = ADTO("from dto").apply { sharedResettable = "i am dto" }
listOf(a, dto).forEach { anA ->
// somewhere receiving an A... we do not know what it is exactly... it's just an AbstractA
val param: AbstractA = anA
println("Starting with: $param sharedResettable=${param.sharedResettable}")
// set something on it... we do not mind yet, what it is exactly...
param.sharedResettable = UUID.randomUUID().toString()
// now we want to store it... but wait... did we have an A here? or a newly created DTO?
// lets check: (demo purpose again)
when (param) {
is ADTO -> store(param) // which now returns an A
is A -> update(param) // maybe updated also our A so a current A is returned
}.also { certainlyA ->
println("After saving/updating: $certainlyA sharedResettable=${certainlyA.sharedResettable /* this was deliberately not part of the data class toString() */}")
}
}
// assume the following signature for store & update:
fun <T> update(param : T) : T
fun store(a : AbstractA) : A
Sample output:
Starting with: A(mandatoryProperty=123, sharedReadonly=from backend) sharedResettable=i am from backend
After saving/updating: A(mandatoryProperty=123, sharedReadonly=from backend) sharedResettable=ef7a3dc0-a4ac-47f0-8a73-0ca0ef5069fa
Starting with: ADTO(sharedReadonly=from dto) sharedResettable=i am dto
After saving/updating: A(mandatoryProperty=127, sharedReadonly=from dto) sharedResettable=57b8b3a7-fe03-4b16-9ec7-742f292b5786
I did not yet show you the ugly part, but you already mentioned it yourself... How do you transform your ADTO
to A
and viceversa? I will leave that up to you. There are several approaches here (manually, using reflection or mapping utilities, etc.).
This variant cleanly seperates all the DTO specific from the non-DTO-specific properties. However it will also lead to redundant code (all the override
, etc.). But at least you know on which object type you operate and can setup signatures accordingly.
Something like 3 is probably easier to setup and to maintain (regarding the data class
itself ;-)) and if you set the boundaries correctly it may even be clear, when there is a null
in there and when not... So showing that example too. Starting with a rather annoying variant first (annoying in the sense that it throws an exception when you try accessing the variable if it wasn't set yet), but at least you spare the !!
or null
-checks here:
data class B(
val sharedOnly : String,
var sharedResettable : String
) {
// why nullable? Let it hurt ;-)
lateinit var mandatoryProperty: ID // ok... Long is not usable with lateinit... that's why there is this ID instead
}
data class ID(val id : Long)
Demo:
val b = B("backend", "resettable")
// println(newB.mandatoryProperty) // uh oh... this hurts now... UninitializedPropertyAccessException on the way
val newB = store(b)
println(newB.mandatoryProperty) // that's now fine...
But: even though accessing mandatoryProperty
will throw an Exception
it is not visible in the toString
nor does it look nice if you need to check whether it already has been initialized (i.e. by using ::mandatoryProperty::isInitialized
).
So I show you another variant (meanwhile my favorite, but... uses null
):
data class C(val mandatoryProperty: Long?,
val sharedOnly : String,
var sharedResettable : String) {
// this is our DTO constructor:
constructor(sharedOnly: String, sharedResettable: String) : this(null, sharedOnly, sharedResettable)
fun hasID() = mandatoryProperty != null // or isDTO, etc. what you like/need
}
// note: you could extract the val and the method also in its own interface... then you would use an override on the mandatoryProperty above instead
// here is what such an interface may look like:
interface HasID {
val mandatoryProperty: Long?
fun hasID() = mandatoryProperty != null // or isDTO, etc. what you like/need
}
Usage:
val c = C("dto", "resettable") // C(mandatoryProperty=null, sharedOnly=dto, sharedResettable=resettable)
when {
c.hasID() -> update(c)
else -> store(c)
}.also {newC ->
// from now on you should know that you are actually dealing with an object that has everything in place...
println("$newC") // prints: C(mandatoryProperty=123, sharedOnly=dto, sharedResettable=resettable)
}
The last one has the benefit, that you can use the copy
-method again, e.g.:
val myNewObj = c.copy(mandatoryProperty = 123) // well, you probably don't do that yourself...
// but the following might rather be a valid case:
val myNewDTO = c.copy(mandatoryProperty = null)
The last one is my favorite as it needs the fewest code and uses a val
instead (so also no accidental override is possible or you operate on a copy instead). You could also just add an accessor for the mandatoryProperty
if you do not like using ?
or !!
, e.g.
fun getMandatoryProperty() = mandatoryProperty ?: throw Exception("You didn't set it!")
Finally if you have some helper methods like hasID
(isDTO
or whatever) in place it might also be clear from the context what you are exactly doing. The most important is probably to setup a convention that everyone understands, so they know when to apply what or when to expect something specific.