Search code examples
pythonpandasdataframescikit-learngradient-descent

setting an array element with a sequence error in scikit learn GradientBoostingClassifier


Here is my code, anyone have any ideas what is wrong? The error happens when I call fit,

import pandas as pd
import numpy as np
from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,
                              GradientBoostingClassifier)
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer

n_estimators = 10
d = {'f1': [1, 2], 'f2': ['foo goo', 'goo zoo'], 'target':[0, 1]}
df = pd.DataFrame(data=d)
X_train, X_test, y_train, y_test = train_test_split(df, df['target'], test_size=0.1)

X_train['f2'] = CountVectorizer().fit_transform(X_train['f2'])
X_test['f2'] = CountVectorizer().fit_transform(X_test['f2'])

grd = GradientBoostingClassifier(n_estimators=n_estimator, max_depth=10)
grd.fit(X_train.values, y_train.values)

Solution

  • The problem is with CountVectorizer:

    import pandas as pd
    from sklearn.feature_extraction.text import CountVectorizer
    
    d = {'f1': [1, 2], 'f2': ['foo goo', 'goo zoo'], 'target':[0, 1]}
    df = pd.DataFrame(data=d)
    df['f2'] = CountVectorizer().fit_transform(df['f2'])
    

    df.values is:

    array([[1,
            <2x3 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>,
            0],
           [2,
            <2x3 sparse matrix of type '<class 'numpy.int64'>'
        with 4 stored elements in Compressed Sparse Row format>,
            1]], dtype=object)
    

    We can see that we are mixing sparse matrix with dense matrix. You can transform it to dense with: todense():

    dense_count = CountVectorizer().fit_transform(df['f2']).todense()
    

    where dense_count is something like:

    matrix([[1, 1, 0],
            [0, 1, 1]], dtype=int64)