I read a lot of topics, but none of the answers helped me...
I have DNN Classifier:
import tensorflow as tf
feature_columns = []
for key in X_train.keys():
feature_columns.append(tf.feature_column.numeric_column(key=key))
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=2
)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
dataset = dataset.shuffle(10).repeat().batch(batch_size)
return dataset
#train the Model
batch_size = 100
train_steps = 400
for i in range(0,100):
classifier.train(
input_fn=lambda:train_input_fn(X_train, y_train, batch_size),
steps=train_steps
)
DataFrame X_train contains 452 numeric columns (most of them - trasformed by OneHodEncode dummy columns): shape is (84692, 452). And the same is len(feature_columns) = 452
But when I trying to save the model using script:
def serving_input_receiver_fn():
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)()
classifier.export_savedmodel(export_dir_base="export_model/", serving_input_receiver_fn=_serving_input_receiver_fn)
I am getting an error:
ValueError: Invalid feature dummy_feature_N_value_M:0.
Tried also to save using a bit another script (but here I understanding not every parameters values...):
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_tensors')
receiver_tensors = {"predictor_inputs": serialized_tf_example}
feature_spec = {"words": tf.FixedLenFeature([452],tf.float32)}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
classifier.export_savedmodel(export_dir_base="export_model/", serving_input_receiver_fn=serving_input_receiver_fn)
But it also returns nearly error:
ValueError: Feature dummy_feature_N_value_M is not in features dictionary.
When I am checking the feature_columns list - is there:
_NumericColumn(key='dummy_feature_N_value_M', shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None),
What I am doing wrong?
don't know what it was... But now everything works.
First, I tried not to use created myself OneHodEncode dummy columns, but input initial dataframe "train_dummy_features" with categorical columns:
# split columns and indexes of categorical and continues columns
categorical_columns = list(train_dummy_features.select_dtypes(include=['category','object']))
print(categorical_columns)
numeric_columns = list(train_dummy_features.select_dtypes(include=['int','uint8']))
print(numeric_columns)
cat_features_indexes = [train_dummy_features.columns.get_loc(c) for c in train_dummy_features.columns if c in categorical_columns]
print(cat_features_indexes)
continues_features_indexes = [train_dummy_features.columns.get_loc(c) for c in train_dummy_features.columns if c not in categorical_columns]
print(continues_features_indexes)
And then created list of feature_columns using functions of TensorFlow:
numeric_features = [tf.feature_column.numeric_column(key = column) for column in numeric_columns]
print(numeric_features)
categorical_features = [
tf.feature_column.embedding_column(
categorical_column = tf.feature_column.categorical_column_with_vocabulary_list
(key = column
, vocabulary_list = train_dummy_features[column].unique()
),
dimension = len(train_dummy_features[column].unique())
)
for column in categorical_columns
]
print(categorical_features[3])
feature_columns = numeric_features + categorical_features
feature_columns[2]
and put initial dataframe "train_dummy_features" with categorical columns to X_train:
X = train_dummy_features
y = train_measure # since we already have dataframe with the measure
X_train, y_train = X, y
Declared "classifier" and "train_input_fn" as specified in the initial post, trained classifier.
After that both
def serving_input_receiver_fn():
#feature_spec = {INPUT_TENSOR_NAME: tf.FixedLenFeature(dtype=tf.float32, shape=[452])}
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)()
classifier.export_savedmodel(export_dir_base="export_model2/", serving_input_receiver_fn=serving_input_receiver_fn)
and
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_tensors')
receiver_tensors = {"predictor_inputs": serialized_tf_example}
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) #{"words": tf.FixedLenFeature([len(feature_columns)],tf.float32)}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
classifier.export_savedmodel(export_dir_base="export_model3/", serving_input_receiver_fn=serving_input_receiver_fn)
successfully exported the model.
I tried to repeat the first version of steps which caused an error yesterday - but can't repeat the error now.
So, described steps are successfully train and export tf.estimator.DNNClassifier model