I have a pandas
DF that looks like this
DF:
name ;time_cost
x ;28800000, 250
x ;39600000, 300
x ;61200000, 250
x ;72000000, 0
y ;86400000, 0
y ;115200000, 250
y ;126000000, 300
y ;147600000, 250
y ;158400000, 0
df.head().to_dict()
{'name': {0: 'x',
1: 'x',
2: 'x',
3: 'x'},
'time_cost': {0: '28800000, 250',
1: '39600000, 300',
2: '61200000, 250',
0: '72000000, 0'}}
I'm trying to put all the values from time_cost into an array like so:
[[[28800000, 250],
[39600000, 300],
[61200000, 250],
[72000000, 0 ],
[86400000, 0 ]],
[[115200000, 250],
[126000000, 300],
[147600000, 250],
[158400000, 0]]]
Here's what I have tried:
import pandas as pd
df = pd.read_csv('file.csv', sep=';')
def f(df):
return pd.Series(dict(timecost_range = "%s" % '| '.join(df['time_cost'])))
result = df.groupby('name').apply(f)
result
timecost_range
name
x 28800000, 250| 39600000, 300| 61200000, 250| 72000000, 0
y 86400000, 0| 115200000, 250| 126000000, 300| 147600000, 250|...
This works somewhat, but isn't exactly what I am looking for. Any ideas or suggestions would be useful.
In my example, data is:
df= pd.DataFrame({'name': {0: 'x',
1: 'x',
2: 'x',
3: 'y'},
'time_cost': {0: '28800000, 250',
1: '39600000, 300',
2: '61200000, 250',
3: '72000000, 0'}})
Step 1. You can use something like this to get result:
def split_function(n):
return n.split(',')
df['time_cost'] = df.time_cost.apply(split_function)
Output:
name time_cost
0 x [28800000, 250]
1 x [39600000, 300]
2 x [61200000, 250]
3 y [72000000, 0]
Step 2. If you want two different columns in your DataFrame you can use:
df.time_cost.apply(pd.Series)
Output:
0 1
0 28800000 250
1 39600000 300
2 61200000 250
3 72000000 0
Step 3. And then join them:
df = df.join(df.time_cost.apply(pd.Series))
Output:
name time_cost 0 1
0 x [28800000, 250] 28800000 250
1 x [39600000, 300] 39600000 300
2 x [61200000, 250] 61200000 250
3 y [72000000, 0] 72000000 0
And then you can use drop
to drop "time_cost" column and rename
to rename new columns if you like.
Is it what you want? I hope it will be helpful.
UPD:
Step 4. If you want grouped by name, you can use this:
df[0] = df[0].astype(int)
df[1] = df[1].astype(int)
def concat_function_0(df):
return np.array(df[0])
def concat_function_1(df):
return np.array(df[1])
df = pd.DataFrame([df.groupby('name').apply(concat_function_1), df.groupby('name').apply(concat_function_0)]).T
It isn't pythonic, but it works = )
Output:
name 0 1
x [250, 300, 250] [28800000, 39600000, 61200000]
y [0] [72000000]
UPD:
Step 5. For your result, after first step use this:
def df_to_array(df):
return list(df.time_cost)
result = df.groupby('name').apply(df_to_array).values
Output:
[[['28800000', ' 250'], ['39600000', ' 300'], ['61200000', ' 250']]
[['72000000', ' 0']]]