Search code examples
rsql-servermicrosoft-r

Can I create a sparse matrix in R from SQL Server


In the past I have run Apriori in R using the "arules" package. In the past I have done this using flat files in R studio with the following code:

# install.packages('arules');
library(arules);

# the following is how I bring in flat files:
ds = read.csv('somedata.csv', header = FALSE)

# and here is how I import this data but as a sparse matrix:
dsSparse = read.transactions('somedata.csv', sep = ',', rm.duplicates = TRUE)

For the first time I am working with data in SQL Server and using R Tools in visual studio.

Here is the script I'm running:

#Connection to SQL Server.
connStr = paste("Driver=SQL Server; Server=", "MyServer", ";Database=", "MyDatabase", ";Trusted_Connection=true;", sep = "");
#Get data from SQL Query
SQL_ds = RxSqlServerData(sqlQuery = "SELECT * FROM dbo.SomeData", connectionString = connStr, returnDataFrame = TRUE);
#Run the query and store the data into the table
ds = rxImport(SQL_ds);

Is there a method I can use to then convert this to a sparse matrix like I do with the static file?

I could write a T-SQL query to pivot the data and create a sparse matrix that way but I'd like to know if I can do it efficiently in R.

Here is a sample of data Im working with:

CREATE TABLE #SomeData
(
SaleId INT
, Item1 NVARCHAR (500)
, Item2 NVARCHAR (500)
, Item3 NVARCHAR (500)
, Item4 NVARCHAR (500)
, Item5 NVARCHAR (500)
, Item6 NVARCHAR (500)
, Item7 NVARCHAR (500)
, Item8 NVARCHAR (500)
, Item9 NVARCHAR (500)
, Item10 NVARCHAR (500)
, Item11 NVARCHAR (500)
, Item12 NVARCHAR (500)
, Item13 NVARCHAR (500)
, Item14 NVARCHAR (500)
, Item15 NVARCHAR (500)
, Item16 NVARCHAR (500)
, Item17 NVARCHAR (500)
, Item18 NVARCHAR (500)
, Item19 NVARCHAR (500)
, Item20 NVARCHAR (500)
)

INSERT INTO #SomeData
VALUES
    (1, N'shrimp', N'almonds', N'avocado', N'vegetables mix', N'green grapes', N'whole weat flour', N'yams', N'cottage cheese', N'energy drink', N'tomato juice', N'low fat yogurt', N'green tea', N'honey', N'salad', N'mineral water'
   , N'salmon', N'antioxydant juice', N'frozen smoothie', N'spinach', N'olive oil')
  , (2, N'burgers', N'meatballs', N'eggs', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)
  , (3, N'chutney', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)
  , (4, N'turkey', N'avocado', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)
  , (5, N'mineral water', N'milk', N'energy bar', N'whole wheat rice', N'green tea', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL)

SELECT * FROM #SomeData

Thanks


Solution

  • If I've understood well you have a table similar to this:

    id item1 item2 ... itemn
    1  a     s         n1
    2  a     s         n2
    3  c     d         n4
    4  c     e         n3
    ...
    m  m1    m2        mn
    

    Unluckily I've worked with R (RStudio) and MSSMS+R (embed R code in SQL), but not with Visual Studio, so I can give you some pseudo-code as reasoning and hint:

    First of all, you have to reduce your table to a two-column table, with the ID and the products: if we have a fake table like this:

    library(arules)
    library(tidyverse)
    fake <- data.frame(id = c(1,2,3,4,5),
                       item1 = c('a','a','a',NA,'b'),
                       item2 = c('d','d','d',NA,NA),
                       item3 = c('e','e','c','k','b'))
    
    > fake
      id item item item
    1  1    a    d    e
    2  2    a    d    e
    3  3    a    d    c
    4  4 <NA> <NA>    k
    5  5    b <NA>    b
    
    colnames(fake) <- c('id','item','item','item')
    df <- rbind(fake[,c(1,2)],fake[,c(1,3)],fake[,c(1,4)])
    
     # here we go
     > df
       id item
    1   1    a
    2   2    a
    3   3    a
    4   4 <NA>
    5   5    b
    6   1    d
    7   2    d
    8   3    d
    9   4 <NA>
    10  5 <NA>
    11  1    e
    12  2    e
    13  3    c
    14  4    k
    15  5    b
    

    To be more precise, you'd remove the rows with NA, but the idea is the same.
    Now you can create your transaction matrix:

      df <- df %>%
      select(id, item) %>%
      distinct() %>%
      mutate(value = 1) %>%
      spread(item, value, fill = 0)
      > df
      id a b d c e k <NA>
    1  1 1 0 1 0 1 0    0
    2  2 1 0 1 0 1 0    0
    3  3 1 0 1 1 0 0    0
    4  4 0 0 0 0 0 1    1
    5  5 0 1 0 0 0 0    1
      # here is necessary the arules package
      itemMatrix <- as(as.matrix(df[, -1]), "transactions")
      > itemMatrix
      transactions in sparse format with
      5 transactions (rows) and
      7 items (columns)
    

    Last, you can apply your apriori algorithm:

    rules <- apriori(itemMatrix, parameter = list(supp = 0.4, conf = 0.8, target = "rules"))
    rules_conf <- sort (rules, by="support", decreasing=TRUE)
    inspect(rules_conf)
    
       lhs      rhs support confidence lift     count
    [1] {d}   => {a} 0.6     1          1.666667 3    
    [2] {a}   => {d} 0.6     1          1.666667 3    
    [3] {e}   => {d} 0.4     1          1.666667 2    
    [4] {e}   => {a} 0.4     1          1.666667 2    
    [5] {d,e} => {a} 0.4     1          1.666667 2    
    [6] {a,e} => {d} 0.4     1          1.666667 2   
    

    As further information, take a look also to the package sqldf and RODBC, to manage data.frame with query in R environment and to connect R via ODBC.