Can someone tell me how (or the name of it, so that I could look it up) I can implement this interpolation effect? https://www.youtube.com/watch?v=36lE9tV9vm0&t=3010s&frags=pl%2Cwn
I tried to use r = r+dr, g = g+dr and b = b+db for the RGB values in each iteration, but it looks way too simple compared to the effect from the video.
"Can someone tell me how I can implement this interpolation effect?
(or the name of it, so that I could look it up)..."
It's not actually a named interpolation effect. It appears to interpolate but really it's just realtime updated variations of some fictional facial "features" (the hair, eyes, nose, etc are synthesized pixels taking hints from a library/database of possible matching feature types).
For this technique they used Neural Networks to do a process similar to DFT Image Reconstruction. You'll be modifying the image data in Frequency domain (with u,v), not Time domain (using x,y).
You can read about it at this PDF:
https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
The (Python) source code:
https://github.com/tkarras/progressive_growing_of_gans
For ideas, on Youtube you can look up:
DFT image reconstruction
(there's a good example with b/w Nicholas Cage photo reconstructed in stages. Loud music warning).
Image Synthesis
with neural networks (one clip had salternative shoe and hand-bag designs (item photos) being "synthesized" by an N.N. after it analyzed features from other existing catalogue photos as "inspiration".
Image Enhancement Super Resolution using neural networks
This method is closest to answering your question. One example has very low-res blurry pixelated image in b/w. Cannot tell if boy or girl. During a test, The network synthesizes various higher quality face images that it thinks is the correct match for the testing input.
After understanding what/how they're achieve it, you could think of shortcuts to get similar effect without needing networks eg: only using regular pixel editing functions.