I would like to use the R package rsample
to generate resamples of my data.
The package offers the function rolling_origin
to produce resamples that keep the time series structure of the data. This means that training data (in the package called analysis
) are always in the past of test data (assessment
).
On the other hand I would like to perform block samples of the data. This means that groups of rows are kept together during sampling. This can be done using the function group_vfold_cv
. As groups one could think of are months. Say, we want to do time series cross validation always keeping months together.
Is there a way to combine the two approaches in rsample
?
I give examples for each procedure on its own:
## generate some data
library(tidyverse)
library(lubridate)
library(rsample)
my_dates = seq(as.Date("2018/1/1"), as.Date("2018/8/20"), "days")
some_data = data_frame(dates = my_dates)
some_data$values = runif(length(my_dates))
some_data = some_data %>% mutate(month = as.factor(month(dates)))
This gives data of the following form
A tibble: 232 x 3
dates values month
<date> <dbl> <fctr>
1 2018-01-01 0.235 1
2 2018-01-02 0.363 1
3 2018-01-03 0.146 1
4 2018-01-04 0.668 1
5 2018-01-05 0.0995 1
6 2018-01-06 0.163 1
7 2018-01-07 0.0265 1
8 2018-01-08 0.273 1
9 2018-01-09 0.886 1
10 2018-01-10 0.239 1
Then we can e.g. produce samples that take 20 weeks of data and test on future 5 weeks (the parameter skip
skips some rows extra):
rolling_origin_resamples <- rolling_origin(
some_data,
initial = 7*20,
assess = 7*5,
cumulative = TRUE,
skip = 7
)
We can check the data with the following code and see no overlap:
rolling_origin_resamples$splits[[1]] %>% analysis %>% tail
# A tibble: 6 x 3
dates values month
<date> <dbl> <fctr>
1 2018-05-15 0.678 5
2 2018-05-16 0.00112 5
3 2018-05-17 0.339 5
4 2018-05-18 0.0864 5
5 2018-05-19 0.918 5
6 2018-05-20 0.317 5
### test data of first split:
rolling_origin_resamples$splits[[1]] %>% assessment
# A tibble: 6 x 3
dates values month
<date> <dbl> <fctr>
1 2018-05-21 0.912 5
2 2018-05-22 0.403 5
3 2018-05-23 0.366 5
4 2018-05-24 0.159 5
5 2018-05-25 0.223 5
6 2018-05-26 0.375 5
Alternatively we can split by months:
## sampling by month:
gcv_resamples = group_vfold_cv(some_data, group = "month", v = 5)
gcv_resamples$splits[[1]] %>% analysis %>% select(month) %>% summary
gcv_resamples$splits[[1]] %>% assessment %>% select(month) %>% summary
As discussed in the comments of the solution from @missuse, the way to achieve this is documented in the github issue: https://github.com/tidymodels/rsample/issues/42
Essentially, the idea is to first nest over your "blocks" and then rolling_origin()
will allow you to roll over them, keeping complete blocks intact.
library(dplyr)
library(lubridate)
library(rsample)
library(tidyr)
library(tibble)
# same data generation as before
my_dates = seq(as.Date("2018/1/1"), as.Date("2018/8/20"), "days")
some_data = data_frame(dates = my_dates)
some_data$values = runif(length(my_dates))
some_data = some_data %>% mutate(month = as.factor(month(dates)))
# nest by month, then resample
rset <- some_data %>%
group_by(month) %>%
nest() %>%
rolling_origin(initial = 1)
# doesn't show which month is which :(
rset
#> # Rolling origin forecast resampling
#> # A tibble: 7 x 2
#> splits id
#> <list> <chr>
#> 1 <S3: rsplit> Slice1
#> 2 <S3: rsplit> Slice2
#> 3 <S3: rsplit> Slice3
#> 4 <S3: rsplit> Slice4
#> 5 <S3: rsplit> Slice5
#> 6 <S3: rsplit> Slice6
#> 7 <S3: rsplit> Slice7
# only January (31 days)
analysis(rset$splits[[1]])$data
#> [[1]]
#> # A tibble: 31 x 2
#> dates values
#> <date> <dbl>
#> 1 2018-01-01 0.373
#> 2 2018-01-02 0.0389
#> 3 2018-01-03 0.260
#> 4 2018-01-04 0.803
#> 5 2018-01-05 0.595
#> 6 2018-01-06 0.875
#> 7 2018-01-07 0.273
#> 8 2018-01-08 0.180
#> 9 2018-01-09 0.662
#> 10 2018-01-10 0.849
#> # ... with 21 more rows
# only February (28 days)
assessment(rset$splits[[1]])$data
#> [[1]]
#> # A tibble: 28 x 2
#> dates values
#> <date> <dbl>
#> 1 2018-02-01 0.402
#> 2 2018-02-02 0.556
#> 3 2018-02-03 0.764
#> 4 2018-02-04 0.134
#> 5 2018-02-05 0.0333
#> 6 2018-02-06 0.907
#> 7 2018-02-07 0.814
#> 8 2018-02-08 0.0973
#> 9 2018-02-09 0.353
#> 10 2018-02-10 0.407
#> # ... with 18 more rows
Created on 2018-08-28 by the reprex package (v0.2.0).