Search code examples
sqlpostgresqlinner-joincommon-table-expression

PostgreSQL proper query structure


I have a Lenovo laptop with Core i5 4210U, 4GB RAM 1600MHz, 500GB HDD, Ubuntu 18.04 running.

In it, I am running a postgres v10 container in docker.

I am an amateur in SQL and completely new in PostgreSQL.

My business logic in brief is

  • There are users registered in the app
  • There are fixed named stoppages scattered around an area (city/state)
  • Users can create routes by using any number of stoppages in any order
  • Other users can search for a route by mentioning arbitrary start and end location (e.g Home, Work)
  • The direction of the route must be taken into account while appearing in a search result

Below lies my approach to this problem.

I have created the following tables

Users

create table users (
  id bigserial primary key,
  name text not null,
  email text not null,
  password text not null,
  created_at timestamp with time zone default current_timestamp,
  updated_at timestamp with time zone default current_timestamp);

Stoppages

create table stoppages (
  id bigserial primary key,
  name text not null,
  lat double precision not null,
  lon double precision not null,
  created_at timestamp with time zone default current_timestamp,
  updated_at timestamp with time zone default current_timestamp);

Routes

create table routes (
  id bigserial primary key,
  name text not null,
  user_id bigint references users(id),
  seats smallint not null,
  start_at timestamp with time zone not null,
  created_at timestamp with time zone default current_timestamp,
  updated_at timestamp with time zone default current_timestamp);

Route Stoppage Map

create table route_stoppage_map (
  route_id bigint references routes(id),
  stoppage_id bigint references stoppages(id),
  sl_no smallint not null);

FYI: Here, the sl_no field is the index of the stoppage in that route.

I have used create extension earthdistance cascade; to install cube and earthdistance extensions in this database.

I have also written a utility function in PLPGSQL which is below

create function stp_within(double precision, double precision, double precision)
  returns table (id bigint, name text, lat double precision, 
                 lon double precision, created_at timestamp with time zone,
                 updated_at timestamp with time zone)
    as $$
      begin
        return query select * from stoppages where
          earth_distance(ll_to_earth(stoppages.lat, stoppages.lon), ll_to_earth($1, $2)) <= $3;
      end;
    $$ language plpgsql;

This function returns the stoppages that are at a particular radius(in meters) from a specific geo-location.

The query I am using to fetch routes from geo location 22.449227, 88.302977 to 22.599199, 88.423370. The default radius I a using is 2000 metres.

The query I have managed to write is below

with start_location as (select * from stp_within(22.449227, 88.302977, 2000)),

  end_location as (select * from stp_within(22.599199, 88.423370, 2000)),

  starting_routes as (select route_id, sl_no from route_stoppage_map where stoppage_id in (select id from start_location)),

  ending_routes as (select route_id, sl_no from route_stoppage_map where stoppage_id in (select id from end_location)),

  matches as (select distinct starting_routes.route_id from starting_routes inner join ending_routes on 
    starting_routes.route_id = ending_routes.route_id and starting_routes.sl_no < ending_routes.sl_no),

  selected_routes as (select name, user_id from routes where id in (select route_id from matches))

  select selected_routes.name as route_name, users.name as user_name from users inner join selected_routes on users.id = selected_routes.user_id;

This is fetching me the bare minimum results. But it is not complete and I can't seem to figure out a way to solve the following issues

  • I need the nearest stoppage on both ends in the result (i.e The nearest stoppage the user can board from and the nearest stoppage from his/her destination).
  • The query is really slow. With explain analyze I found 0.931 ms planning time and 20.728 ms execution time, when there are just 2 users, 5 routes and 7 stoppages and each route has only 3-5 stoppages.
  • Is it possible to write the same query in a more efficient manner?

Please forgive me if I have missed any information(s).

Please help me address the problems stated above.

EDIT: The output of explain (analyze, buffers)

Result {
  command: 'EXPLAIN',
  rowCount: null,
  oid: null,
  rows:
   [ { 'QUERY PLAN': 'Hash Join  (cost=410.84..415.36 rows=200 width=64) (actual time=2.494..2.499 rows=3 loops=1)' },
     { 'QUERY PLAN': '  Hash Cond: (selected_routes.user_id = users.id)' },
     { 'QUERY PLAN': '  Buffers: shared hit=487' },
     { 'QUERY PLAN': '  CTE start_location' },
     { 'QUERY PLAN': '    ->  Function Scan on stp_within  (cost=0.25..10.25 rows=1000 width=72) (actual time=1.812..1.813 rows=3 loops=1)' },
     { 'QUERY PLAN': '          Buffers: shared hit=482' },
     { 'QUERY PLAN': '  CTE end_location' },
     { 'QUERY PLAN': '    ->  Function Scan on stp_within stp_within_1  (cost=0.25..10.25 rows=1000 width=72) (actual time=0.567..0.568 rows=2 loops=1)' },
     { 'QUERY PLAN': '          Buffers: shared hit=1' },
     { 'QUERY PLAN': '  CTE starting_routes' },
     { 'QUERY PLAN': '    ->  Hash Join  (cost=27.00..69.19 rows=885 width=10) (actual time=1.835..1.842 rows=9 loops=1)' },
     { 'QUERY PLAN': '          Hash Cond: (route_stoppage_map.stoppage_id = start_location.id)' },
     { 'QUERY PLAN': '          Buffers: shared hit=483' },
     { 'QUERY PLAN': '          ->  Seq Scan on route_stoppage_map  (cost=0.00..27.70 rows=1770 width=18) (actual time=0.002..0.004 rows=23 loops=1)' },
     { 'QUERY PLAN': '                Buffers: shared hit=1' },
     { 'QUERY PLAN': '          ->  Hash  (cost=24.50..24.50 rows=200 width=8) (actual time=1.825..1.825 rows=3 loops=1)' },
     { 'QUERY PLAN': '                Buckets: 1024  Batches: 1  Memory Usage: 9kB' },
     { 'QUERY PLAN': '                Buffers: shared hit=482' },
     { 'QUERY PLAN': '                ->  HashAggregate  (cost=22.50..24.50 rows=200 width=8) (actual time=1.822..1.823 rows=3 loops=1)' },
     { 'QUERY PLAN': '                      Group Key: start_location.id' },
     { 'QUERY PLAN': '                      Buffers: shared hit=482' },
     { 'QUERY PLAN': '                      ->  CTE Scan on start_location  (cost=0.00..20.00 rows=1000 width=8) (actual time=1.813..1.816 rows=3 loops=1)' },
     { 'QUERY PLAN': '                            Buffers: shared hit=482' },
     { 'QUERY PLAN': '  CTE ending_routes' },
     { 'QUERY PLAN': '    ->  Hash Join  (cost=27.00..69.19 rows=885 width=10) (actual time=0.585..0.590 rows=7 loops=1)' },
     { 'QUERY PLAN': '          Hash Cond: (route_stoppage_map_1.stoppage_id = end_location.id)' },
     { 'QUERY PLAN': '          Buffers: shared hit=2' },
     { 'QUERY PLAN': '          ->  Seq Scan on route_stoppage_map route_stoppage_map_1  (cost=0.00..27.70 rows=1770 width=18) (actual time=0.003..0.005 rows=23 loops=1)' },
     { 'QUERY PLAN': '                Buffers: shared hit=1' },
     { 'QUERY PLAN': '          ->  Hash  (cost=24.50..24.50 rows=200 width=8) (actual time=0.577..0.577 rows=2 loops=1)' },
     { 'QUERY PLAN': '                Buckets: 1024  Batches: 1  Memory Usage: 9kB' },
     { 'QUERY PLAN': '                Buffers: shared hit=1' },
     { 'QUERY PLAN': '                ->  HashAggregate  (cost=22.50..24.50 rows=200 width=8) (actual time=0.574..0.575 rows=2 loops=1)' },
     { 'QUERY PLAN': '                      Group Key: end_location.id' },
     { 'QUERY PLAN': '                      Buffers: shared hit=1' },
     { 'QUERY PLAN': '                      ->  CTE Scan on end_location  (cost=0.00..20.00 rows=1000 width=8) (actual time=0.568..0.569 rows=2 loops=1)' },
     { 'QUERY PLAN': '                            Buffers: shared hit=1' },
     { 'QUERY PLAN': '  CTE matches' },
     { 'QUERY PLAN': '    ->  Unique  (cost=122.04..198.25 rows=200 width=8) (actual time=2.451..2.458 rows=3 loops=1)' },
     { 'QUERY PLAN': '          Buffers: shared hit=485' },
     { 'QUERY PLAN': '          ->  Merge Join  (cost=122.04..194.99 rows=1305 width=8) (actual time=2.450..2.456 rows=5 loops=1)' },
     { 'QUERY PLAN': '                Merge Cond: (starting_routes.route_id = ending_routes.route_id)' },
     { 'QUERY PLAN': '                Join Filter: (starting_routes.sl_no < ending_routes.sl_no)' },
     { 'QUERY PLAN': '                Rows Removed by Join Filter: 7' },
     { 'QUERY PLAN': '                Buffers: shared hit=485' },
     { 'QUERY PLAN': '                ->  Sort  (cost=61.02..63.23 rows=885 width=10) (actual time=1.852..1.852 rows=9 loops=1)' },
     { 'QUERY PLAN': '                      Sort Key: starting_routes.route_id' },
     { 'QUERY PLAN': '                      Sort Method: quicksort  Memory: 25kB' },
     { 'QUERY PLAN': '                      Buffers: shared hit=483' },
     { 'QUERY PLAN': '                      ->  CTE Scan on starting_routes  (cost=0.00..17.70 rows=885 width=10) (actual time=1.836..1.844 rows=9 loops=1)' },
     { 'QUERY PLAN': '                            Buffers: shared hit=483' },
     { 'QUERY PLAN': '                ->  Sort  (cost=61.02..63.23 rows=885 width=10) (actual time=0.596..0.597 rows=10 loops=1)' },
     { 'QUERY PLAN': '                      Sort Key: ending_routes.route_id' },
     { 'QUERY PLAN': '                      Sort Method: quicksort  Memory: 25kB' },
     { 'QUERY PLAN': '                      Buffers: shared hit=2' },
     { 'QUERY PLAN': '                      ->  CTE Scan on ending_routes  (cost=0.00..17.70 rows=885 width=10) (actual time=0.586..0.592rows=7 loops=1)' },
     { 'QUERY PLAN': '                            Buffers: shared hit=2' },
     { 'QUERY PLAN': '  CTE selected_routes' },
     { 'QUERY PLAN': '    ->  Hash Join  (cost=9.00..31.32 rows=200 width=40) (actual time=2.483..2.485 rows=3 loops=1)' },
     { 'QUERY PLAN': '          Hash Cond: (routes.id = matches.route_id)' },
     { 'QUERY PLAN': '          Buffers: shared hit=486' },
     { 'QUERY PLAN': '          ->  Seq Scan on routes  (cost=0.00..18.00 rows=800 width=48) (actual time=0.004..0.004 rows=5 loops=1)' },
     { 'QUERY PLAN': '                Buffers: shared hit=1' },
     { 'QUERY PLAN': '          ->  Hash  (cost=6.50..6.50 rows=200 width=8) (actual time=2.466..2.466 rows=3 loops=1)' },
     { 'QUERY PLAN': '                Buckets: 1024  Batches: 1  Memory Usage: 9kB' },
     { 'QUERY PLAN': '                Buffers: shared hit=485' },
     { 'QUERY PLAN': '                ->  HashAggregate  (cost=4.50..6.50 rows=200 width=8) (actual time=2.464..2.465 rows=3 loops=1)' },
     { 'QUERY PLAN': '                      Group Key: matches.route_id' },
     { 'QUERY PLAN': '                      Buffers: shared hit=485' },
     { 'QUERY PLAN': '                      ->  CTE Scan on matches  (cost=0.00..4.00 rows=200 width=8) (actual time=2.453..2.461 rows=3 loops=1)' },
     { 'QUERY PLAN': '                            Buffers: shared hit=485' },
     { 'QUERY PLAN': '  ->  CTE Scan on selected_routes  (cost=0.00..4.00 rows=200 width=40) (actual time=2.484..2.488 rows=3 loops=1)' },
     { 'QUERY PLAN': '        Buffers: shared hit=486' },
     { 'QUERY PLAN': '  ->  Hash  (cost=15.50..15.50 rows=550 width=40) (actual time=0.005..0.005 rows=2 loops=1)' },
     { 'QUERY PLAN': '        Buckets: 1024  Batches: 1  Memory Usage: 9kB' },
     { 'QUERY PLAN': '        Buffers: shared hit=1' },
     { 'QUERY PLAN': '        ->  Seq Scan on users  (cost=0.00..15.50 rows=550 width=40) (actual time=0.004..0.004 rows=2 loops=1)' },
     { 'QUERY PLAN': '              Buffers: shared hit=1' },
     { 'QUERY PLAN': 'Planning time: 0.642 ms' },
     { 'QUERY PLAN': 'Execution time: 3.471 ms' } ],
  fields:
   [ Field {
       name: 'QUERY PLAN',
       tableID: 0,
       columnID: 0,
       dataTypeID: 25,
       dataTypeSize: -1,
       dataTypeModifier: -1,
       format: 'text' } ],
  _parsers: [ [Function: noParse] ],
  RowCtor: null,
  rowAsArray: false,
  _getTypeParser: [Function: bound ] }

Solution

  • You should inline the common table expressions. You could also inline the procedure.

    Once the data gets larger, those 'distincts' will hurt you as well. I prefer not to use "SELECT *" - instead itemize out which columns you need, as it makes it easy to write indexes later.

    This should be much closer to what you need:

    select 
      selected_routes.name as route_name, 
      users.name as user_name 
    from users 
    join (
      select 
        name, 
        user_id 
      from routes 
      where id in (
        select starting_routes.route_id 
        from (
          select 
            route_id, 
            sl_no 
          from route_stoppage_map 
          where stoppage_id in (
            select id
            from stoppages 
            where earth_distance(
              ll_to_earth(stoppages.lat, stoppages.lon), 
              ll_to_earth(22.449227, 88.302977)) <= 2000
          )
        ) starting_routes 
        join (
          select route_id, sl_no 
          from route_stoppage_map 
          where stoppage_id in (
            select id 
            from stoppages 
            where earth_distance(
              ll_to_earth(stoppages.lat, stoppages.lon), 
              ll_to_earth(22.599199, 88.423370)) <= 2000
          )
        ) ending_routes 
        on starting_routes.route_id = ending_routes.route_id 
        and starting_routes.sl_no < ending_routes.sl_no
      )
    ) selected_routes on users.id = selected_routes.user_id
    

    If you want to test the performance of the query, you'll also get much more accurate results if you increase the amount of data - if you increase the size of your dataset to the point where this takes 10-60 seconds, your attempts to tune the query will be much more fruitful, as any one-off operations become rounding errors (time spent retrieving/rendering results, opening/closing connections, etc).