I have a list of 3 Items.
Items_list = ['a','b','c']
sklearn cosinesimilarities function gives me an output of 3 x 3 matrix for all the combinations of items 'a','b' and 'c' as follows:
similarities =[[1, 0.5, 0.2],
[0.5, 1, 0.6],
[0.2, 0.6, 1]]
I want to create a Pandas DataFrame with two columns as follows: Required Output:
Col1 Col2
0 a [(a, 1), (b, 0.5), (c, 0.2)]
1 b [(a, 0.5), (b, 1), (c, 0.6)]
2 c [(a, 0.2), (b, 0.6), (c, 1)]
Hope that's what you need
import pandas as pd
item_list = ['a','b','c']
similarities =[[1, 0.5, 0.2],
[0.5, 1, 0.6],
[0.2, 0.6, 1]]
tuple_similarities = [list(zip(item_list, row)) for row in similarities]
df = pd.DataFrame({'Col1': item_list,
'Col2': tuple_similarities})
print(df)
Output:
Col1 Col2
0 a [(a, 1), (b, 0.5), (c, 0.2)]
1 b [(a, 0.5), (b, 1), (c, 0.6)]
2 c [(a, 0.2), (b, 0.6), (c, 1)]