I am trying to implement my own cost function, specifically the one below:
Now I know this question has been asked several times on this site and the answers I read are typically something like below:
def custom_objective(y_true, y_pred):
....
return L
where people always seem to use y_true
and y_pred
and then say that you just have to compile the model model.compile(loss=custom_objective)
and go from there. No one really mentions that somewhere in the code that y_true=something
and y_pred=something
. Is that something I have to specify in my model?
Not sure if I am using .predict()
correctly to get the running predictions from the model as it is training:
params = {'lr': 0.0001,
'batch_size': 30,
'epochs': 400,
'dropout': 0.2,
'optimizer': 'adam',
'losses': 'avg_partial_likelihood',
'activation':'relu',
'last_activation': 'linear'}
def model(x_train, y_train, x_val, y_val):
l2_reg = 0.4
kernel_init ='he_uniform'
bias_init ='he_uniform'
layers=[20, 20, 1]
model = Sequential()
# layer 1
model.add(Dense(layers[0], input_dim=x_train.shape[1],
W_regularizer=l2(l2_reg),
kernel_initializer=kernel_init,
bias_initializer=bias_init))
model.add(BatchNormalization(axis=-1, momentum=momentum, center=True))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout']))
# layer 2+
for layer in range(0, len(layers)-1):
model.add(Dense(layers[layer+1], W_regularizer=l2(l2_reg),
kernel_initializer=kernel_init,
bias_initializer=bias_init))
model.add(BatchNormalization(axis=-1, momentum=momentum, center=True))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout']))
# Last layer
model.add(Dense(layers[-1], activation=params['last_activation'],
kernel_initializer=kernel_init,
bias_initializer=bias_init))
model.compile(loss=params['losses'],
optimizer=keras.optimizers.adam(lr=params['lr']),
metrics=['accuracy'])
history = model.fit(x_train, y_train,
validation_data=[x_val, y_val],
batch_size=params['batch_size'],
epochs=params['epochs'],
verbose=1)
y_pred = model.predict(x_train, batch_size=params['batch_size'])
history_dict = history.history
model_output = {'model':model,
'history_dict':history_dict,
'log_risk':y_pred}
return model_output
then create the model:
model(x_train, y_train, x_val, y_val)
'log_risk' would be y_true
and x_train
would be used to calculate y_pred
:
def avg_partial_likelihood(x_train, log_risk):
from lifelines import CoxPHFitter
cph = CoxPHFitter()
cph.fit(x_train, duration_col='survival_fu_combine', event_col='death',
show_progress=False)
# obtain exp(hx)
cph_output = pd.DataFrame(cph.summary).T
# summing hazard ratio
hazard_ratio_sum = cph_output.iloc[1,].sum()
# -log(sum(exp(hxj)))
neg_log_sum = -np.log(hazard_ratio_sum)
# sum of positive events (death==1)
sum_noncensored_events = (x_train.death==1).sum()
# neg_likelihood
neg_likelihood = -(log_risk + neg_log_sum)/sum_noncensored_events
return neg_likelihood
AttributeError Traceback (most recent call last)
<ipython-input-26-cf0236299ad5> in <module>()
----> 1 model(x_train, y_train, x_val, y_val)
<ipython-input-25-d0f9409c831a> in model(x_train, y_train, x_val, y_val)
45 model.compile(loss=avg_partial_likelihood,
46 optimizer=keras.optimizers.adam(lr=params['lr']),
---> 47 metrics=['accuracy'])
48
49 history = model.fit(x_train, y_train,
~\Anaconda3\lib\site-packages\keras\engine\training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
331 with K.name_scope(self.output_names[i] + '_loss'):
332 output_loss = weighted_loss(y_true, y_pred,
--> 333 sample_weight, mask)
334 if len(self.outputs) > 1:
335 self.metrics_tensors.append(output_loss)
~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in weighted(y_true, y_pred, weights, mask)
401 """
402 # score_array has ndim >= 2
--> 403 score_array = fn(y_true, y_pred)
404 if mask is not None:
405 # Cast the mask to floatX to avoid float64 upcasting in Theano
<ipython-input-23-ed57799a1f9d> in avg_partial_likelihood(x_train, log_risk)
27
28 cph.fit(x_train, duration_col='survival_fu_combine', event_col='death',
---> 29 show_progress=False)
30
31 # obtain exp(hx)
~\Anaconda3\lib\site-packages\lifelines\fitters\coxph_fitter.py in fit(self, df, duration_col, event_col, show_progress, initial_beta, strata, step_size, weights_col)
90 """
91
---> 92 df = df.copy()
93
94 # Sort on time
AttributeError: 'Tensor' object has no attribute 'copy'
No one really mentions that somewhere in the code that
y_true=something
andy_pred=something
...
They don't mention it because you don't need to do that! Actually, at the end of each pass (i.e. forward propagation on one batch), Keras feeds y_true
and y_pred
using the true labels and predictions of the model for that pass. Therefore, you don't need to define y_true
and y_pred
in your model at all. Just define your loss function using the backend functions (i.e. from keras import backend as K
) and everything would work fine (and never use numpy in your loss function). To get an idea, take a look at the built-in loss functions in Keras and see how they have been implemented. And here is a (possibly incomplete) list of available backend functions.