Search code examples
rfor-loopif-statementnested-loops

Loop with if else and next R


I am combining a loop with if else and next in R.

In order to reproduce my problem in its complexity, I cannot provide a minimum example but a big piece of code. The aim is to fill the list df with min, max, 50percentile in the columns rmse_1 and rmse_2.

You need to change the path according to your desired path at the positions marked with # !!! change path. If you changed the paths you can run the code:

# create lists
mse_samp <- list("mse_A" = list("P10" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(2.5, 4.6, 7.8), 
                                                   mse_2 = c(6.7, 8.9, 4.1)), 
                                "P30" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(22.5, 74.6, 97.8), 
                                                   mse_2 = c(56.7, 78.9, 14.1))),

                 "mse_B" = list("P10" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(122.5, 124.6, 127.8), 
                                                   mse_2 = c(126.7, 128.9, 124.1)), 
                                "P30" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(3422.5, 3474.6, 3497.8), 
                                                   mse_2 = c(3456.7, 3478.9, 3414.1))))
# !!! change path
save(mse_samp, 
     file="H:\\R\\Forum_data\\dat1.RData")

mse_samp <- list("mse_A" = list("P70" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(22.2, 77.6, 97.8, 21.2, 73.9), 
                                                   mse_2 = c(26.7, 78.9, 17.1, 23.2, 82.2)),
                                "P80" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(1022.2, 3077.6, 9097.8, 1221.2, 7373.9), 
                                                   mse_2 = c(7626.7, 2278.9, 7317.1, 7623.2, 8982.2))),
                 "mse_B" = list("P70" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(3722.2, 3777.6, 3797.8), 
                                                   mse_2 = c(3726.7, 3778.9, 3717.1)),
                                "P80" = data.frame(number = seq(1,3,1), 
                                                   mse_1 = c(1022.2, 3077.6, 9097.8), 
                                                   mse_2 = c(7626.7, 2278.9, 7317.1))))

save(mse_samp, 
     file="H:\\R\\Forum_data\\dat2.RData")

# create table for min max for different perc and runs for each paramter (loop)
n_measure <- 3 # number of different measures
npr1 <- 2 # number of different percs run1
npr2 <- 2 # number of different percs run2


targets <- c("A",  "B")

for (i in 1:length(targets)) {
  df <- data.frame(run = c(rep("run1", n_measure * npr1),
                           rep("run2", n_measure * npr2)),

                   perc_train = c(rep(c(0.1, 0.3), times = 1, each = n_measure), # percs run 1
                                  rep(c(0.7, 0.8), times = 1, each = n_measure)), # percs run 2

                   measure = c(rep(c("min", "max", "50percentile"),
                                   times = npr1 + npr2, each = 1)),

                   rmse_1 = rep(NA,  n_measure * (npr1 + npr2)),
                   rmse_2 = rep(NA,  n_measure * (npr1 + npr2))
  )

  assign(paste0('df_', targets[i]), df)

}

df <- list("A" = df_A,  "B" = df_B)

# convert column which are factors to characters
for (i in 1:length(targets)) {

  df[[i]][sapply(df[[i]], is.factor)] <- lapply(df[[i]][sapply(df[[i]], is.factor)], 
                                                as.character)
}

rm(list = c("df_A", "df_B", "df_C"))
# !!! change path
path <- c("H:\\R\\Forum_data\\dat1.RData", # run1
# !!! change path          
          "H:\\R\\Forum_data\\dat2.RData") # run2

percs_names <- c("P10", "P30", "P70", "P80")
percs <- c(0.1, 0.3, 0.7, 0.8)
targets <- c("A", "B")
run_name <- c("run1", "run2")
measure_name <- c("min", "max", "50percentile")
fill_names <- c("rmse_min_1", "rmse_min_2", "rmse_max_1", "rmse_max_2", 
                "percentile_50_1", "percentile_50_2")
var_name <- c("rmse_1", "rmse_2")
a_or_b <- c("a","b")


# read in data
for (i in 1:length(path)) {
  load(path[i])

  dat <- mse_samp


  for (j in 1:length(targets)) {
    for (k in 1:length(percs_names)) {
      # if statement
      if(percs_names[k] == names(dat[[j]][k])){

        dat1 <- dat[[paste0("mse_", targets[j])]][k][[1]]
        rmse_min_1 <- sqrt(min(dat1$mse_1))
        rmse_min_2 <- sqrt(min(dat1$mse_2))
        rmse_max_1 <- sqrt(max(dat1$mse_1))
        rmse_max_2 <- sqrt(max(dat1$mse_2))
        percentile_50_1 <- quantile(sqrt(dat1$mse_1), probs = 0.5)
        percentile_50_2 <- quantile(sqrt(dat1$mse_2), probs = 0.5)


        for (fi in 1:length(fill_names)) {    
        for (m in 1:length(measure_name)) {


          a <- which(df[[targets[j]]]$run == run_name[i] & 
                       df[[targets[j]]]$measure == measure_name[m] & 
                       df[[targets[j]]]$perc_train == percs[k] &
                       is.na(df[[targets[j]]]$rmse_1)
          )
          b <- which(df[[targets[j]]]$run == run_name[i] & 
                       df[[targets[j]]]$measure == measure_name[m] & 
                       df[[targets[j]]]$perc_train == percs[k] &
                       is.na(df[[targets[j]]]$rmse_2)
          )

          for (v in 1:length(var_name)) {


          df[[targets[j]]][eval(parse(text = a_or_b[v])), which(names(df[[targets[j]]]) == var_name[v])] <- eval(parse(text = fill_names[fi]))

        }

            }

          }



      }
      else { next }
    }
  }
}

1. issue After running the code, the following error message occurs:

 Error in if (percs_names[k] == names(dat[[j]][k])) { : 
 missing value where TRUE/FALSE needed 

I guess the error is probably caused by the if elsestatement. How can I run the code without the error?

2. issue Currently only rows for run1 are filled. The rmse_1 an rmse_2 are filled with the same values in rows min, max, 50percentile. They should be different. How can I fill the other runs and fill the rows correctly? In the end there should be no NA left.


Solution

  • Although you insist on using for-loops here is a solution to you problem with map (similiar to lapply) and some tidyverse-magic.

    I have one assumption: All datasets your working on are stored in a list, called data_runs_list. An example is given at the end of the answer in the Data-section (using your example data).

    So lets first bring this nested structure in a more readable format:

    library(tidyverse)
    library(stringr)
    
    data_runs_df <-
      map(data_runs_list, ~ map(.x, bind_rows, .id = "perc") %>% 
            bind_rows(.id = "target")) %>% 
      bind_rows(.id = "run")
    
    data_runs_df
    # A tibble: 24 x 6
    #  run   target perc  number  mse_1  mse_2
    #  <chr> <chr>  <chr>  <int>  <dbl>  <dbl>
    # 1 run1  mse_A  P10        1    2.5    6.7
    # 2 run1  mse_A  P10        2    4.6    8.9
    # 3 run1  mse_A  P10        3    7.8    4.1
    # 4 run1  mse_A  P30        1   22.5   56.7
    # 5 run1  mse_A  P30        2   74.6   78.9
    # 6 run1  mse_A  P30        3   97.8   14.1
    # 7 run1  mse_B  P10        1  122.   127. 
    # 8 run1  mse_B  P10        2  125.   129. 
    # 9 run1  mse_B  P10        3  128.   124. 
    # 10 run1  mse_B  P30        1 3422.  3457. 
    # # ... with 14 more rows
    

    To better understand, what bind_rows() does, only take the first entry of the first entry of list and see what happens:

    bind_rows(data_runs_list[[1]][[1]], .id = "perc")
    #   perc number mse_1 mse_2
    # 1  P10      1   2.5   6.7
    # 2  P10      2   4.6   8.9
    # 3  P10      3   7.8   4.1
    # 4  P30      1  22.5  56.7
    # 5  P30      2  74.6  78.9
    # 6  P30      3  97.8  14.1
    

    The two dataframes are stacked together and the id-column perc preserves the original list name. map then applies to each level of the list bind_row one after another, on each level with a different id-column.

    So this is something to work with nicely. You want to have min, max and 50%-quantile (i.e. the median) of for each run, percentage, target and seperately for the two measurements mse_1 and mse_2. group_by is perfect for this in combindation with summarize. To better handle the two different measurements, first convert the data to a long format. If you have more measurements you can just specify them at the end of the gather-call:

    data_runs_df <- data_runs_df %>% 
      gather(mse, value, mse_1, mse_2)
    
    data_runs_df 
    # A tibble: 48 x 6
    #   run   target perc  number mse    value
    #   <chr> <chr>  <chr>  <int> <chr>  <dbl>
    # 1  run1  mse_A  P10        1 mse_1    2.5
    # 2  run1  mse_A  P10        2 mse_1    4.6
    # 3  run1  mse_A  P10        3 mse_1    7.8
    # 4  run1  mse_A  P30        1 mse_1   22.5
    # 5  run1  mse_A  P30        2 mse_1   74.6
    # 6  run1  mse_A  P30        3 mse_1   97.8
    # 7  run1  mse_B  P10        1 mse_1  122. 
    # 8  run1  mse_B  P10        2 mse_1  125. 
    # 9  run1  mse_B  P10        3 mse_1  128. 
    # 10 run1  mse_B  P30        1 mse_1 3422. 
    # ... with 38 more rows
    

    Now, before the measurements are calculated, we rename the target and mse column quick and then use the group_by in combindation with summarize:

    data_info <- data_runs_df %>% 
      mutate(mse = str_c("r", mse), 
             target = str_remove(target, "mse_")) %>% 
      group_by(run, target, perc, mse) %>% 
      summarize(min = min(sqrt(value)), 
                max = max(sqrt(value)), 
                median = median(sqrt(value))) 
    
    data_info
    # A tibble: 16 x 7
    # Groups:   run, target, perc [?]
    #   run   target perc  mse      min   max median
    #   <chr> <chr>  <chr> <chr>  <dbl> <dbl>  <dbl>
    # 1  run1  A      P10   rmse_1  1.58  2.79   2.14
    # 2  run1  A      P10   rmse_2  2.02  2.98   2.59
    # 3  run1  A      P30   rmse_1  4.74  9.89   8.64
    # 4  run1  A      P30   rmse_2  3.75  8.88   7.53
    # 5  run1  B      P10   rmse_1 11.1  11.3   11.2 
    # 6  run1  B      P10   rmse_2 11.1  11.4   11.3 
    # 7  run1  B      P30   rmse_1 58.5  59.1   58.9 
    # 8  run1  B      P30   rmse_2 58.4  59.0   58.8 
    # 9  run2  A      P70   rmse_1  4.71  9.89   8.81
    # 10 run2  A      P70   rmse_2  4.14  8.88   5.17
    # 11 run2  A      P80   rmse_1 32.0  95.4   55.5 
    # 12 run2  A      P80   rmse_2 47.7  87.3   85.5 
    # 13 run2  B      P70   rmse_1 61.0  61.6   61.5 
    # 14 run2  B      P70   rmse_2 61.0  61.5   61.0 
    # 15 run2  B      P80   rmse_1 32.0  95.4   55.5 
    # 16 run2  B      P80   rmse_2 47.7  87.3   85.5 
    

    Now one last step to get everything it the exact shap you wanted to have it we need gather and its counterpart spread:

    data_info <- data_info %>% 
      gather(measure, value, min, max, median) %>% 
      spread(mse, value) 
    
    data_info 
    # A tibble: 24 x 6
    # Groups:   run, target, perc [8]
    #   run   target perc  measure rmse_1 rmse_2
    #   <chr> <chr>  <chr> <chr>    <dbl>  <dbl>
    # 1  run1  A      P10   max       2.79   2.98
    # 2  run1  A      P10   median    2.14   2.59
    # 3  run1  A      P10   min       1.58   2.02
    # 4  run1  A      P30   max       9.89   8.88
    # 5  run1  A      P30   median    8.64   7.53
    # 6  run1  A      P30   min       4.74   3.75
    # 7  run1  B      P10   max      11.3   11.4 
    # 8  run1  B      P10   median   11.2   11.3 
    # 9  run1  B      P10   min      11.1   11.1 
    # 10 run1  B      P30   max      59.1   59.0 
    # ... with 14 more rows
    

    Everyting in two calls:

    data_runs_df <-
      map(data_runs_list, ~ map(.x, bind_rows, .id = "perc") %>% 
            bind_rows(.id = "target")) %>% 
      bind_rows(.id = "run")
    
    data_info <- data_runs_df %>% 
      gather(mse, value, mse_1, mse_2) %>% 
      mutate(mse = str_c("r", mse), 
             target = str_remove(target, "mse_")) %>% 
      group_by(run, target, perc, mse) %>% 
      summarize(min = min(sqrt(value)), 
                max = max(sqrt(value)), 
                median = median(sqrt(value))) %>% 
      gather(measure, value, min, max, median) %>% 
      spread(mse, value)
    

    If you insist on the list-format you were using, you can do:

    data_info_list <- map(c("A", "B"), function(x) filter(data_info, target == x))
    names(data_info_list) <- c("A", "B")
    

    Data

    mse_samp1 <- 
      list("mse_A" = list("P10" = data.frame(number = 1:3, mse_1 = c(2.5, 4.6, 7.8), mse_2 = c(6.7, 8.9, 4.1)), 
                          "P30" = data.frame(number = 1:3, mse_1 = c(22.5, 74.6, 97.8), mse_2 = c(56.7, 78.9, 14.1))),
           "mse_B" = list("P10" = data.frame(number = 1:3, mse_1 = c(122.5, 124.6, 127.8), mse_2 = c(126.7, 128.9, 124.1)), 
                          "P30" = data.frame(number = 1:3, mse_1 = c(3422.5, 3474.6, 3497.8), mse_2 = c(3456.7, 3478.9, 3414.1))))
    
    mse_samp2 <- 
      list("mse_A" = list("P70" = data.frame(number = 1:3, mse_1 = c(22.2, 77.6, 97.8), mse_2 = c(26.7, 78.9, 17.1)),
                          "P80" = data.frame(number = 1:3, mse_1 = c(1022.2, 3077.6, 9097.8), mse_2 = c(7626.7, 2278.9, 7317.1))),
           "mse_B" = list("P70" = data.frame(number = 1:3, mse_1 = c(3722.2, 3777.6, 3797.8), mse_2 = c(3726.7, 3778.9, 3717.1)),
                          "P80" = data.frame(number = 1:3, mse_1 = c(1022.2, 3077.6, 9097.8), mse_2 = c(7626.7, 2278.9, 7317.1))))
    
    data_runs_list <- list(run1 = mse_samp1, run2 = mse_samp2)