Search code examples
dictionarypysparkrddflatmapdstream

Using Map in PySpark to parse and assign column names


Here is what I am trying to do.

The input data looks like this(Tab seperated):

12/01/2018 user1 123.123.222.111 23.3s
12/01/2018 user2 123.123.222.116 21.1s

The data is coming in through Kafka and is being parsed with the following code.

kafkaStream = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic: 1})
lines = kafkaStream.map(lambda x: x[1])
parsed_log = lines.flatMap(lambda line: line.split(" "))
                  .map(lambda item: ('key', {
                  'date': item['date'],
                  'user': item['user'],
                  'ip': item['ip'],
                  'duration': item['duration'],}))

The parsed logs should be in the following format:

('key', {'date': 12/01/2018, 'user': user1, 'ip': 123.123.222.111, 'duration': 23.3s}) 
('key', {'date': 12/01/2018, 'user': user2, 'ip': 123.123.222.116, 'duration': 21.1s})

In my code the code lines for "lines" and "parsed_log" and not doing the job. Could you please let me know how to go about this.


Solution

  • This is the solution:

    lines = kafkaStream.map(lambda x: x[1]) 
    variables_per_stream = lines.map(lambda line: line.split(" "))
    variable_to_key=variables_per_stream.map(lambda item: ('key', {'id': item[0],'name': item[1]}))