I have a df such as...
log_ratio city type year
0 2.892095 Detroit Pos_A 2016
1 2.176814 Detroit Pos_B 2016
2 3.218273 Detroit Pos_A 2017
3 2.922206 Detroit Pos_B 2017
4 2.776701 Columbus Pos_A 2016
5 2.615424 Columbus Pos_B 2016
6 2.781899 Columbus Pos_A 2017
7 2.499343 Columbus Pos_B 2017
...
I want to reshape this table so that the city
is the index and the year
and type
become a hierarchical columns and the log_ratio
are the values, such as...
mr 2016 2017
Pos_A Pos_B Pos_A Pos_B
Detroit 2.892095 2.176814 3.218273 2.922206
Columbus 2.776701 2.615424 2.781899 2.499343
...
When I run the command...
df3 = df2.pivot(index='mr',columns=['year','type'],values='log_ratio')
I get an error...
'Cannot find level year'.
Any help would be much appreciated. Thanks!
I think all you need is pivot_table
instead of pivot
:
df.pivot_table(index='city', columns=['year','type'], values='log_ratio')
year 2016 2017
type Pos_A Pos_B Pos_A Pos_B
city
Columbus 2.776701 2.615424 2.781899 2.499343
Detroit 2.892095 2.176814 3.218273 2.922206
For more details, check out this awesome canonical answer: How to pivot a dataframe