The following function finds the optimum "thetas" for a regression line using gradient descent. The inputs (X,y) are appended below. My question is what is the difference between code 1 and code 2? Why would code 2 work but code 1 not work?
Thanks in advance!
GRADIENTDESCENTMULTI Performs gradient descent to learn theta, it updates theta by taking num_iters gradient steps with learning rate alpha
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
% Initialize some useful values
m = length(y); % number of training examples
n = length(theta);
J_history = zeros(num_iters, 1);
costs = zeros(n,1);
for iter = 1:num_iters
% code 1 - doesn't work
for c = 1:n
for i = 1:m
costs(c) = costs(c)+(X(i,:)*theta - y(i))*X(i,c);
end
end
% code 2 - does work
E = X * theta - y;
for c = 1:n
costs(c) = sum(E.*X(:,c));
end
% update each theta
for c = 1:n
theta(c) = theta(c) - alpha*costs(c)/m;
end
J_history(iter) = computeCostMulti(X, y, theta);
end
end
function J = computeCostMulti(X, y, theta)
for i=1:m
J = J+(X(i,:)*theta - y(i))^2;
end
J = J/(2*m);
To run the code:
alpha = 0.01;
num_iters = 200;
% Init Theta and Run Gradient Descent
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');
% Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
X is
1.0000 0.1300 -0.2237
1.0000 -0.5042 -0.2237
1.0000 0.5025 -0.2237
1.0000 -0.7357 -1.5378
1.0000 1.2575 1.0904
1.0000 -0.0197 1.0904
1.0000 -0.5872 -0.2237
1.0000 -0.7219 -0.2237
1.0000 -0.7810 -0.2237
1.0000 -0.6376 -0.2237
1.0000 -0.0764 1.0904
1.0000 -0.0009 -0.2237
1.0000 -0.1393 -0.2237
1.0000 3.1173 2.4045
1.0000 -0.9220 -0.2237
1.0000 0.3766 1.0904
1.0000 -0.8565 -1.5378
1.0000 -0.9622 -0.2237
1.0000 0.7655 1.0904
1.0000 1.2965 1.0904
1.0000 -0.2940 -0.2237
1.0000 -0.1418 -1.5378
1.0000 -0.4992 -0.2237
1.0000 -0.0487 1.0904
1.0000 2.3774 -0.2237
1.0000 -1.1334 -0.2237
1.0000 -0.6829 -0.2237
1.0000 0.6610 -0.2237
1.0000 0.2508 -0.2237
1.0000 0.8007 -0.2237
1.0000 -0.2034 -1.5378
1.0000 -1.2592 -2.8519
1.0000 0.0495 1.0904
1.0000 1.4299 -0.2237
1.0000 -0.2387 1.0904
1.0000 -0.7093 -0.2237
1.0000 -0.9584 -0.2237
1.0000 0.1652 1.0904
1.0000 2.7864 1.0904
1.0000 0.2030 1.0904
1.0000 -0.4237 -1.5378
1.0000 0.2986 -0.2237
1.0000 0.7126 1.0904
1.0000 -1.0075 -0.2237
1.0000 -1.4454 -1.5378
1.0000 -0.1871 1.0904
1.0000 -1.0037 -0.2237
Y is
399900
329900
369000
232000
539900
299900
314900
198999
212000
242500
239999
347000
329999
699900
259900
449900
299900
199900
499998
599000
252900
255000
242900
259900
573900
249900
464500
469000
475000
299900
349900
169900
314900
579900
285900
249900
229900
345000
549000
287000
368500
329900
314000
299000
179900
299900
239500
I think I have it working right. The main thing is that in code 1 you kept adding to cost(c) but never set it to zero before the next iteration. The only thing you really need to change, is to add something like cost(c) = 0;
after for c = 1:n
and before for i = 1:m
. I did have to change your code a tiny bit to get it working for me (mainly the computeCostMulti
) and I've changed the plots to show that the result is the same for both methods. Overall, here is a working demo piece of code with these changes
close all; clear; clc;
%% Data
X = [1.0000 0.1300 -0.2237; 1.0000 -0.5042 -0.2237; 1.0000 0.5025 -0.2237; 1.0000 -0.7357 -1.5378;
1.0000 1.2575 1.0904; 1.0000 -0.0197 1.0904; 1.0000 -0.5872 -0.2237; 1.0000 -0.7219 -0.2237;
1.0000 -0.7810 -0.2237; 1.0000 -0.6376 -0.2237; 1.0000 -0.0764 1.0904; 1.0000 -0.0009 -0.2237;
1.0000 -0.1393 -0.2237; 1.0000 3.1173 2.4045; 1.0000 -0.9220 -0.2237; 1.0000 0.3766 1.0904;
1.0000 -0.8565 -1.5378; 1.0000 -0.9622 -0.2237; 1.0000 0.7655 1.0904; 1.0000 1.2965 1.0904;
1.0000 -0.2940 -0.2237; 1.0000 -0.1418 -1.5378; 1.0000 -0.4992 -0.2237; 1.0000 -0.0487 1.0904;
1.0000 2.3774 -0.2237; 1.0000 -1.1334 -0.2237; 1.0000 -0.6829 -0.2237; 1.0000 0.6610 -0.2237;
1.0000 0.2508 -0.2237; 1.0000 0.8007 -0.2237; 1.0000 -0.2034 -1.5378; 1.0000 -1.2592 -2.8519;
1.0000 0.0495 1.0904; 1.0000 1.4299 -0.2237; 1.0000 -0.2387 1.0904; 1.0000 -0.7093 -0.2237;
1.0000 -0.9584 -0.2237; 1.0000 0.1652 1.0904; 1.0000 2.7864 1.0904; 1.0000 0.2030 1.0904;
1.0000 -0.4237 -1.5378; 1.0000 0.2986 -0.2237; 1.0000 0.7126 1.0904; 1.0000 -1.0075 -0.2237;
1.0000 -1.4454 -1.5378; 1.0000 -0.1871 1.0904; 1.0000 -1.0037 -0.2237];
y = [399900 329900 369000 232000 539900 299900 314900 198999 212000 242500 239999 347000 329999,...
699900 259900 449900 299900 199900 499998 599000 252900 255000 242900 259900 573900 249900,...
464500 469000 475000 299900 349900 169900 314900 579900 285900 249900 229900 345000 549000,...
287000 368500 329900 314000 299000 179900 299900 239500]';
alpha = 0.01;
num_iters = 200;
% Init Theta and Run Gradient Descent
theta0 = zeros(3, 1);
[theta_result_1, J_history_1] = gradientDescentMulti(X, y, theta0, alpha, num_iters, 1);
[theta_result_2, J_history_2] = gradientDescentMulti(X, y, theta0, alpha, num_iters, 2);
% Plot the convergence graph for both methods
figure;
x = 1:numel(J_history_1);
subplot(5,1,1:4);
plot(x,J_history_1,x,J_history_2);
xlim([min(x) max(x)]);
set(gca,'XTickLabel','');
ylabel('Cost J');
grid on;
subplot(5,1,5);
stem(x,(J_history_1-J_history_2)./J_history_1,'ko');
xlim([min(x) max(x)]);
xlabel('Number of iterations');
ylabel('frac. \DeltaJ');
grid on;
% Display gradient descent's result
fprintf('Theta computed from gradient descent with method 1: \n');
fprintf(' %f \n', theta_result_1);
fprintf('Theta computed from gradient descent with method 2: \n');
fprintf(' %f \n', theta_result_2);
fprintf('\n');
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters, METHOD)
% Initialize some useful values
m = length(y); % number of training examples
n = length(theta);
J_history = zeros(num_iters, 1);
costs = zeros(n,1);
for iter = 1:num_iters
if METHOD == 1 % code 1 - does work
for c = 1:n
costs(c) = 0;
for i = 1:m
costs(c) = costs(c) + (X(i,:)*theta - y(i)) *X(i,c);
end
end
elseif METHOD == 2 % code 2 - does work
E = X * theta - y;
for c = 1:n
costs(c) = sum(E.*X(:,c));
end
else
error('unknown method');
end
% update each theta
for c = 1:n
theta(c) = theta(c) - alpha*costs(c)/m;
end
J_history(iter) = computeCostMulti(X, y, theta);
end
end
function J = computeCostMulti(X, y, theta)
m = length(y); J = 0;
for mi = 1:m
J = J + (X(mi,:)*theta - y(mi))^2;
end
J = J/(2*m);
end
But, again, you really just need to add the cost(c) = 0;
line.
Also; I'd recommend always adding the close all; clear; clc;
line at the beginning of your scripts to make sure they'll work if you copy and paste them into stack overflow.