I trained Random Forest Classifier in sklearn
to predict multi-class classification problem.
My dataset has four class labels. But my code create 2x2 confusion matrix
y_predict = rf.predict(X_test)
conf_mat = sklearn.metrics.confusion_matrix(y_test, y_predict)
print(conf_mat)
Output:
[[0, 0]
[394, 39]]
How can I get 4x4 confusion matrix to analyze TP, TN, FP, FN.
From the documentation at
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
Result :
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])