I have a integer64
indexed data.table
object:
library(data.table)
library(bit64)
some_data = as.integer64(c(1514772184120000026, 1514772184120000068, 1514772184120000042, 1514772184120000078,1514772184120000011, 1514772184120000043, 1514772184120000094, 1514772184120000085,
1514772184120000083, 1514772184120000017, 1514772184120000013, 1514772184120000060, 1514772184120000032, 1514772184120000059, 1514772184120000029))
#
n <- 10
x <- setDT(data.frame(a = runif(n)))
x[, new_col := some_data[1:n]]
setorder(x, new_col)
Then I have a bunch of other integer64
that I need to binary-search for in the indexes of my original data.table
object (x
):
search_values <- some_data[(n+1):length(some_data)]
If these where native integers I could use findInterval()
to solve the problem:
values_index <- findInterval(search_values, x$new_col)
but when the arguments to findInterval
are integer64
, I get:
Warning messages:
1: In as.double.integer64(vec) :
integer precision lost while converting to double
2: In as.double.integer64(x) :
integer precision lost while converting to double
and wrong indexes:
> values_index
[1] 10 10 10 10 10
e.g. it is not true that the entries of search_values
are all larger than all entries of x$new_col
.
Desired output:
print(values_index)
9 10 6 10 1
Why?:
value_index
has as many entries as search_values
. For each entries of search_values
, the corresponding entry in value_index
gives the rank that entry of search_values
would have if it where inserted inside x$new_col
. So the first entry of value_index
is 9
because the first entry of search_values
(1514772184120000045
) would have rank 9
among the entries of x$new_col
.
Maybe you want something like this:
findInterval2 <- function(y, x) {
toadd <- y[!(y %in% x$new_col)] # search_values that is not in data
x2 <- copy(x)
x2[, i := .I] # mark the original data set
x2 <- rbindlist(list(x2, data.table(new_col = toadd)),
use.names = T, fill = T) # add missing search_values
setkey(x2, new_col) # order
x2[, index := cumsum(!is.na(i))]
x2[match(y, new_col), index]
}
# x2 is:
# a new_col i index
# 1: 0.56602278 1514772184120000011 1 1
# 2: NA 1514772184120000013 NA 1
# 3: 0.29408237 1514772184120000017 2 2
# 4: 0.28532378 1514772184120000026 3 3
# 5: NA 1514772184120000029 NA 3
# 6: NA 1514772184120000032 NA 3
# 7: 0.66844754 1514772184120000042 4 4
# 8: 0.83008829 1514772184120000043 5 5
# 9: NA 1514772184120000059 NA 5
# 10: NA 1514772184120000060 NA 5
# 11: 0.76992760 1514772184120000068 6 6
# 12: 0.57049677 1514772184120000078 7 7
# 13: 0.14406169 1514772184120000083 8 8
# 14: 0.02044602 1514772184120000085 9 9
# 15: 0.68016024 1514772184120000094 10 10
findInterval2(search_values, x)
# [1] 1 5 3 5 3
If not, then maybe you could change the code as needed.
look at this integer example to see that this function gives the same result as base findInterval
now <- 10
n <- 10
n2 <- 10
some_data = as.integer(now + sample.int(n + n2, n + n2))
x <- setDT(data.frame(a = runif(n)))
x[, new_col := some_data[1:n]]
setorder(x, new_col)
search_values <- some_data[(n + 1):length(some_data)]
r1 <- findInterval2(search_values, x)
r2 <- findInterval(search_values, x$new_col)
all.equal(r1, r2)