Given the following 3 matrices:
M = np.arange(35 * 37 * 59).reshape([35, 37, 59])
A = np.arange(35 * 51 * 59).reshape([35, 51, 59])
B = np.arange(37 * 51 * 51 * 59).reshape([37, 51, 51, 59])
C = np.arange(59 * 27).reshape([59, 27])
I'm using einsum
to compute:
D1 = np.einsum('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize=True);
But I found it to be much less performant then:
tmp = np.einsum('xyf,xtf->tfy', A, M, optimize=True)
tmp = np.einsum('ytpf,yft->ftp', B, tmp, optimize=True)
D2 = np.einsum('fr,ftp->tpr', C, tmp, optimize=True)
And I can't understand why.
Overall I'm trying to optimize this piece of code as much as I can. I've read about the np.tensordot
function but I can't seem to figure out how to utilize it for the given computation.
Looks like you stumbled onto a case where the greedy
path gives a non-optimal scaling.
>>> path, desc = np.einsum_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="greedy");
>>> print(desc)
Complete contraction: xyf,xtf,ytpf,fr->tpr
Naive scaling: 6
Optimized scaling: 5
Naive FLOP count: 3.219e+10
Optimized FLOP count: 4.165e+08
Theoretical speedup: 77.299
Largest intermediate: 5.371e+06 elements
--------------------------------------------------------------------------
scaling current remaining
--------------------------------------------------------------------------
5 ytpf,xyf->xptf xtf,fr,xptf->tpr
4 xptf,xtf->ptf fr,ptf->tpr
4 ptf,fr->tpr tpr->tpr
>>> path, desc = np.einsum_path('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="optimal");
>>> print(desc)
Complete contraction: xyf,xtf,ytpf,fr->tpr
Naive scaling: 6
Optimized scaling: 4
Naive FLOP count: 3.219e+10
Optimized FLOP count: 2.744e+07
Theoretical speedup: 1173.425
Largest intermediate: 1.535e+05 elements
--------------------------------------------------------------------------
scaling current remaining
--------------------------------------------------------------------------
4 xtf,xyf->ytf ytpf,fr,ytf->tpr
4 ytf,ytpf->ptf fr,ptf->tpr
4 ptf,fr->tpr tpr->tpr
Using np.einsum('xyf,xtf,ytpf,fr->tpr', M, A, B, C, optimize="optimal")
should have you running at peak performance. I can look into this edge to see if greedy can nab it.