I have a dataset of reviews which has a class label of positive/negative. I am applying Decision Tree to that reviews dataset. Firstly, I am converting into a Bag of words. Here sorted_data['Text'] is reviews and final_counts is a sparse matrix.
I am splitting the data into train and test dataset.
X_tr, X_test, y_tr, y_test = cross_validation.train_test_split(sorted_data['Text'], labels, test_size=0.3, random_state=0)
# BOW
count_vect = CountVectorizer()
count_vect.fit(X_tr.values)
final_counts = count_vect.transfrom(X_tr.values)
applying the Decision Tree algorithm as follows
# instantiate learning model k = optimal_k
# Applying the vectors of train data on the test data
optimal_lambda = 15
final_counts_x_test = count_vect.transform(X_test.values)
bow_reg_optimal = DecisionTreeClassifier(max_depth=optimal_lambda,random_state=0)
# fitting the model
bow_reg_optimal.fit(final_counts, y_tr)
# predict the response
pred = bow_reg_optimal.predict(final_counts_x_test)
# evaluate accuracy
acc = accuracy_score(y_test, pred) * 100
print('\nThe accuracy of the Decision Tree for depth = %f is %f%%' % (optimal_lambda, acc))
bow_reg_optimal is a decision tree classifier. Could anyone tell how to get the feature importance using the decision tree classifier?
Use the feature_importances_
attribute, which will be defined once fit()
is called. For example:
import numpy as np
X = np.random.rand(1000,2)
y = np.random.randint(0, 5, 1000)
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier().fit(X, y)
tree.feature_importances_
# array([ 0.51390759, 0.48609241])