I've trained a model with pre-trained word embeddings like this:
embedding_matrix = np.zeros((vocab_size, 100))
for word, i in text_tokenizer.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
embedding_layer = Embedding(vocab_size,
100,
embeddings_initializer=Constant(embedding_matrix),
input_length=50,
trainable=False)
With the architecture looking like this:
sequence_input = Input(shape=(50,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
text_cnn = Conv1D(filters=5, kernel_size=5, padding='same', activation='relu')(embedded_sequences)
text_lstm = LSTM(500, return_sequences=True)(embedded_sequences)
char_in = Input(shape=(50, 18, ))
char_cnn = Conv1D(filters=5, kernel_size=5, padding='same', activation='relu')(char_in)
char_cnn = GaussianNoise(0.40)(char_cnn)
char_lstm = LSTM(500, return_sequences=True)(char_in)
merged = concatenate([char_lstm, text_lstm])
merged_d1 = Dense(800, activation='relu')(merged)
merged_d1 = Dropout(0.5)(merged_d1)
text_class = Dense(len(y_unique), activation='softmax')(merged_d1)
model = Model([sequence_input,char_in], text_class)
When I go to convert the model to json, I get this error:
ValueError: can only convert an array of size 1 to a Python scalar
Similarly, if I use the model.save()
function, it seems to save correctly, but when I go to load it, I get Type Error: Expected Float32
.
My question is: is there something I am missing when trying to serialize this model? Do I need some sort of Lambda
layer or something of the sorts?
Any help would be greatly appreciated!
You can use the weights
argument in Embedding
layer to provide initial weights.
embedding_layer = Embedding(vocab_size,
100,
weights=[embedding_matrix],
input_length=50,
trainable=False)
The weights should remain non-trainable after model saving/loading:
model.save('1.h5')
m = load_model('1.h5')
m.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_3 (InputLayer) (None, 50) 0
__________________________________________________________________________________________________
input_4 (InputLayer) (None, 50, 18) 0
__________________________________________________________________________________________________
embedding_1 (Embedding) (None, 50, 100) 1000000 input_3[0][0]
__________________________________________________________________________________________________
lstm_4 (LSTM) (None, 50, 500) 1038000 input_4[0][0]
__________________________________________________________________________________________________
lstm_3 (LSTM) (None, 50, 500) 1202000 embedding_1[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, 50, 1000) 0 lstm_4[0][0]
lstm_3[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 50, 800) 800800 concatenate_2[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 50, 800) 0 dense_2[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 50, 15) 12015 dropout_2[0][0]
==================================================================================================
Total params: 4,052,815
Trainable params: 3,052,815
Non-trainable params: 1,000,000
__________________________________________________________________________________________________