Search code examples
pythonscipynumerical-integration

Implementing numerical integration using scipy.integrate.nquad


I have this 2-dimensional integral with dependent limits. The function can be defined in Python as

def func(gamma, u2, u3):
    return (1-1/(1+gamma-u3-u2))*(1/(1+u2)**2)*(1/(1+u3)**2)

where the limits of u3 is from 0 to gamma (a positive real number), and the limits of u2 is from 0 to gamma-u3.

How can I implement this using scipy.integrate.nquad? I tried to read the documentation, but it was not easy to follow, especially I am relatively new to Python.

Extension: I would like to implement a numerical integration for an arbiraty K, where the integrand in this case is given by (1-1/(1+gamma-uk-....-u2))*(1/(1+uK)**2)*...*(1/(1+u2)**2). I wrote the function that takes a dynamic number of arguments as follows:

def integrand(gamma, *args):
    '''
    inputs:
     - gamma
     - *args = (uK, ..., u2)

    Output:
     - (1-1/(1+gamma-uk-....-u2))*(1/(1+uK)**2)*...*(1/(1+u2)**2)
    '''
    L = len(args)
    for ll in range(0, L):
        gamma -= args[ll]
    func = 1-1/(1+gamma)
    for ll in range(0, L):
        func *= 1/((1+args[ll])**2)
    return func

However, I am not sure how to do the same for the ranges, where I will have one function for the ranges, where uK ranges from 0 to gamma, u_{K-1} ranges from 0 to gamma-uK, ...., u2 ranges from 0 to gamma-uK-...-u2.


Solution

  • Here is a simpler method using scipy.integrate.dblquad instead of nquad:

    Return the double (definite) integral of func(y, x) from x = a..b and y = gfun(x)..hfun(x).

    from  scipy.integrate import dblquad
    
    def func(u2, u3, gamma):
        return (1-1/(1+gamma-u3-u2))*(1/(1+u2)**2)*(1/(1+u3)**2)
    
    
    gamma = 10
    
    def gfun(u3):
        return 0
    
    def hfun(u3):
        return gamma-u3
    
    dblquad(func, 0, gamma, gfun, hfun, args=(gamma,))
    

    It seems that gfun and hfun do not accept the extra arguments, so gamma has to be a global variable.

    Using nquad, after many trial and error:

    from  scipy.integrate import nquad
    
    def func(u2, u3, gamma):
        return (1-1/(1+gamma-u3-u2))*(1/(1+u2)**2)*(1/(1+u3)**2)
    
    def range_u3(gamma):
        return (0, gamma)
    
    def range_u2(u3, gamma):
        return (0, gamma-u3)
    
    gamma = 10
    nquad(func, [range_u2, range_u3], args=(gamma,) )
    

    Useful quote from the source code of tplquad:

    # nquad will hand (y, x, t0, ...) to ranges0
    # nquad will hand (x, t0, ...) to ranges1
    

    And from the nquad documentation, the order of the variables is reversed (same for dblquad):

    Integration is carried out in order. That is, integration over x0 is the innermost integral, and xn is the outermost

    Generic case with k nested integrations:

    from  scipy.integrate import nquad
    import numpy as np
    
    def func(*args):
        gamma = args[-1]
        var = np.array(args[:-1])
    
        return (1-1/(1+gamma-np.sum(var)))*np.prod(((1+var)**-2))
    
    def range_func(*args):
        gamma = args[-1]
        return (0, gamma-sum(args[:-1]))
    
    gamma, k = 10, 2
    nquad(func, [range_func]*k, args=(gamma,) )