I am a beginner with R. I am using glm to conduct logistic regression and then using the 'margins' package to calculate marginal effects but I don't seem to be able to exclude the missing values in my categorical independent variable.
I have tried to ask R to exclude NAs from the regression. The categorical variable is weight status at age 9 (wgt9), and it has three levels (1, 2, 3) and some NAs.
What am I doing wrong? Why do I get a wgt9NA result in my outputs and how can I correct it?
Thanks in advance for any help/advice.
summary(logit.phbehav <- glm(obese13 ~ gender + as.factor(wgt9) + aded08b,
data = gui, weights = bdwg01, family = binomial(link = "logit")))
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -3.99 0.293 -13.6 2.86e- 42
2 gender 0.387 0.121 3.19 1.42e- 3
3 as.factor(wgt9)2 2.49 0.177 14.1 3.28e- 45
4 as.factor(wgt9)3 4.65 0.182 25.6 4.81e-144
5 as.factor(wgt9)NA 2.60 0.234 11.1 9.94e- 29
6 aded08b -0.0755 0.0224 -3.37 7.47e- 4
effects_logit_phtotal = margins(logit.phtot)
print(effects_logit_phtotal)
summary(effects_logit_phtotal)
> summary(effects_logit_phtotal)
factor AME SE z p lower upper
aded08a -0.0012 0.0002 -4.8785 0.0000 -0.0017 -0.0007
gender 0.0115 0.0048 2.3899 0.0169 0.0021 0.0210
wgt92 0.0941 0.0086 10.9618 0.0000 0.0773 0.1109
wgt93 0.4708 0.0255 18.4569 0.0000 0.4208 0.5207
wgt9NA 0.1027 0.0179 5.7531 0.0000 0.0677 0.1377
First of all welcome to stack overflow. Please check the answer here to see how to make a great R question. Not providing a sample of your data, some times makes it impossible to answer the question. However taking a guess, I think that you have not set your NA values correctly but as strings. This behavior can be seen in the dummy data below.
First let's create the dummy data:
v1 <- c(2,3,3,3,2,2,2,2,NA,NA,NA)
v2 <- c(2,3,3,3,2,2,2,2,"NA","NA","NA")
v3 <- c(11,5,6,7,10,8,7,6,2,5,3)
obese <- c(0,1,1,0,0,1,1,1,0,0,0)
df <- data.frame(obese,v1,v2)
Using the variable named v1, does not include NA as a category:
glm(formula = obese ~ as.factor(v1) + v3, family = binomial(link = "logit"),
data = df)
Deviance Residuals:
1 2 3 4 5 6 7 8
-2.110e-08 2.110e-08 1.168e-05 -1.105e-05 -2.110e-08 3.094e-06 2.110e-08 2.110e-08
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 401.48 898581.15 0 1
as.factor(v1)3 -96.51 326132.30 0 1
v3 -46.93 106842.02 0 1
While making the string "NA" to factor gives an output similar to the one in question:
glm(formula = obese ~ as.factor(v2) + v3, family = binomial(link = "logit"),
data = df)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.402e-05 -2.110e-08 -2.110e-08 2.110e-08 1.472e-05
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 394.21 744490.08 0.001 1
as.factor(v2)3 -95.33 340427.26 0.000 1
as.factor(v2)NA -327.07 613934.84 -0.001 1
v3 -45.99 84477.60 -0.001 1
Try the following to replace NAs that are strings:
gui$wgt9[ gui$wgt9 == "NA" ] <- NA
Don't forget to accept any answer that solved your problem.