I have a dataframe with 30,000 records in the following format:
ID | Name | Latitude | Longitude | Country |
1 | Hull | 53.744 | -0.3456 | GB |
I would like to select one record to be the start location and one record to be the destination and return a path (list) for the shortest path.
I am using Geopy to find the distance between points in km
import geopy.distance
coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
print (geopy.distance.vincenty(coords_1, coords_2).km)
I have read how to do A* in python from the following tutorial: https://www.redblobgames.com/pathfinding/a-star/implementation.html
However they create a grid system to navigate through.
This is a visual representation of the records in the dataframe:
This is the code I have so far however it fails to find a path:
def calcH(start, end):
coords_1 = (df['latitude'][start], df['longitude'][start])
coords_2 = (df['latitude'][end], df['longitude'][end])
distance = (geopy.distance.vincenty(coords_1, coords_2)).km
return distance
^Calculates the distance between points
def getneighbors(startlocation):
neighborDF = pd.DataFrame(columns=['ID', 'Distance'])
coords_1 = (df['latitude'][startlocation], df['longitude'][startlocation])
for index, row in df.iterrows():
coords_2 = (df['latitude'][index], df['longitude'][index])
distance = round((geopy.distance.vincenty(coords_1, coords_2)).km,2)
neighborDF.loc[len(neighborDF)] = [index, distance]
neighborDF = neighborDF.sort_values(by=['Distance'])
neighborDF = neighborDF.reset_index(drop=True)
return neighborDF[1:5]
^Returns the 4 closest locations (ignoring itself)
openlist = pd.DataFrame(columns=['ID', 'F', 'G', 'H', 'parentID'])
closedlist = pd.DataFrame(columns=['ID', 'F', 'G', 'H', 'parentID'])
startIndex = 25479 # Hessle
endIndex = 8262 # Leeds
h = calcH(startIndex, endIndex)
openlist.loc[len(openlist)] = [startIndex,h, 0, h, startIndex]
while True:
#sort the open list by F score
openlist = openlist.sort_values(by=['F'])
openlist = openlist.reset_index(drop=True)
currentLocation = openlist.loc[0]
closedlist.loc[len(closedlist)] = currentLocation
openlist = openlist[openlist.ID != currentLocation.ID]
if currentLocation.ID == endIndex:
print("Complete")
break
adjacentLocations = getneighbors(currentLocation.ID)
if(len(adjacentLocations) < 1):
print("No Neighbors: " + str(currentLocation.ID))
else:
print(str(len(adjacentLocations)))
for index, row in adjacentLocations.iterrows():
if adjacentLocations['ID'][index] in closedlist.values:
continue
if (adjacentLocations['ID'][index] in openlist.values) == False:
g = currentLocation.G + calcH(currentLocation.ID, adjacentLocations['ID'][index])
h = calcH(adjacentLocations['ID'][index], endIndex)
f = g + h
openlist.loc[len(openlist)] = [adjacentLocations['ID'][index], f, g, h, currentLocation.ID]
else:
adjacentLocationInDF = openlist.loc[openlist['ID'] == adjacentLocations['ID'][index]] #Get location from openlist
g = currentLocation.G + calcH(currentLocation.ID, adjacentLocations['ID'][index])
f = g + adjacentLocationInDF.H
if float(f) < float(adjacentLocationInDF.F):
openlist = openlist[openlist.ID != currentLocation.ID]
openlist.loc[len(openlist)] = [adjacentLocations['ID'][index], f, g, adjacentLocationInDF.H, currentLocation.ID]
if (len(openlist)< 1):
print("No Path")
break
Finds the path from the closed list:
# return the path
pathdf = pd.DataFrame(columns=['name', 'latitude', 'longitude', 'country'])
def getParent(index):
parentDF = closedlist.loc[closedlist['ID'] == index]
pathdf.loc[len(pathdf)] = [df['name'][parentDF.ID.values[0]],df['latitude'][parentDF.ID.values[0]],df['longitude'][parentDF.ID.values[0]],df['country'][parentDF.ID.values[0]]]
if index != startIndex:
getParent(parentDF.parentID.values[0])
getParent(closedlist['ID'][len(closedlist)-1])
Currently this implementation of A* isn't finding a complete path . Any suggestions?
Edit: I have tried increasing the number of considered neighbors from 4 to 10 and I got a path but not a optimum path:
We are trying to get from Hessle to Leeds.
Raw Data: Link
I'm still not sure what's the problem with your appraoch, although there certainly are a few, as already mentioned in comments.
x in dataframe.values
will check whether x
is any of the values in the numpy-array returned by values
, not necessarily the ID fieldAnyhow, I found this to be an interesting problem and gave it a try. Turns out, though, that using dataframes as some kind of pseudo-heap was indeed very slow, and also I found the dataframe-indexing to be extremely confusing (and possibly error-prone?), so I changed the code to use namedtuple
for data and a proper heapq
heap for the openlist
and a dict
mapping nodes to their parents for the closedlist
. Also, there are fewer checks than in your code (e.g. whether a node is already in the openlist) and those do not matter really.
import csv, geopy.distance, collections, heapq
Location = collections.namedtuple("Location", "ID name latitude longitude country".split())
data = {}
with open("stations.csv") as f:
r = csv.DictReader(f)
for d in r:
i, n, x, y, c = int(d["id"]), d["name"], d["latitude"], d["longitude"], d["country"]
if c == "GB":
data[i] = Location(i,n,x,y,c)
def calcH(start, end):
coords_1 = (data[start].latitude, data[start].longitude)
coords_2 = (data[end].latitude, data[end].longitude)
distance = (geopy.distance.vincenty(coords_1, coords_2)).km
return distance
def getneighbors(startlocation, n=10):
return sorted(data.values(), key=lambda x: calcH(startlocation, x.ID))[1:n+1]
def getParent(closedlist, index):
path = []
while index is not None:
path.append(index)
index = closedlist.get(index, None)
return [data[i] for i in path[::-1]]
startIndex = 25479 # Hessle
endIndex = 8262 # Leeds
Node = collections.namedtuple("Node", "ID F G H parentID".split())
h = calcH(startIndex, endIndex)
openlist = [(h, Node(startIndex, h, 0, h, None))] # heap
closedlist = {} # map visited nodes to parent
while len(openlist) >= 1:
_, currentLocation = heapq.heappop(openlist)
print(currentLocation)
if currentLocation.ID in closedlist:
continue
closedlist[currentLocation.ID] = currentLocation.parentID
if currentLocation.ID == endIndex:
print("Complete")
for p in getParent(closedlist, currentLocation.ID):
print(p)
break
for other in getneighbors(currentLocation.ID):
g = currentLocation.G + calcH(currentLocation.ID, other.ID)
h = calcH(other.ID, endIndex)
f = g + h
heapq.heappush(openlist, (f, Node(other.ID, f, g, h, currentLocation.ID)))
This gives me this path from Hessle to Leeds, which seems more reasonable:
Location(ID=25479, name='Hessle', latitude='53.717567', longitude='-0.442169', country='GB')
Location(ID=8166, name='Brough', latitude='53.726452', longitude='-0.578255', country='GB')
Location(ID=25208, name='Eastrington', latitude='53.75481', longitude='-0.786612', country='GB')
Location(ID=25525, name='Howden', latitude='53.764526', longitude='-0.86068', country='GB')
Location(ID=7780, name='Selby', latitude='53.78336', longitude='-1.06355', country='GB')
Location(ID=26157, name='Sherburn-In-Elmet', latitude='53.797142', longitude='-1.23176', country='GB')
Location(ID=25308, name='Garforth Station', latitude='53.796211', longitude='-1.382083', country='GB')
Location(ID=8262, name='Leeds', latitude='53.795158', longitude='-1.549089', country='GB')
Even if you can't use this because you have to use Pandas (?), maybe this helps you finally spot your actual error.