I have trained a custom CNN model with Tensorflow Estimator API. I have successfully Frozen the graph, but the conversion to UFF fails and throws following error:
'KeyError: u'IteratorGetNext:1'
The code to do the said conversion:
frozen_graph_filename = "Frozen_model.pb"
TMP_UFF_FILENAME = "output.uff"
output_name = "sigmoid"
uff_model = uff.from_tensorflow_frozen_model(
frozen_file=frozen_graph_filename,
output_nodes=[output_name],
output_filename=TMP_UFF_FILENAME,
text=False,
)
The names of the nodes in the graph are,
prefix/OneShotIterator
prefix/IteratorGetNext
prefix/Reshape/shape
prefix/Reshape
prefix/Reshape_1/shape
prefix/Reshape_1
prefix/conv1/kernel
prefix/conv1/bias
.
.
.
prefix/logits/MatMul
prefix/logits/BiasAdd
prefix/sigmoid
So is there a way to remove the first two Iterator nodes? They are useless outside of the training context. I have also used tf.graph_util.remove_training_nodes
but it does not alleviate the problem I am facing.
The Graph Transform Tool can be used to do exactly what I wanted to achieve, in order to be able to use the tool one has to clone tensorflow repository and run the configure file in order to setup a workspace. Follow the instructions provided in 1 to build the tool. Once done invoke the tool by,
bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
--in_graph=tensorflow_inception_graph.pb \
--out_graph=optimized_inception_graph.pb \
--inputs='Mul:0' \
--outputs='softmax:0' \
--transforms='
strip_unused_nodes(type=float, shape="1,299,299,3")
remove_nodes(op=Identity, op=CheckNumerics)
fold_old_batch_norms
'
Once you have the optimized graph pass it to
uff.from_tensorflow_frozen()
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md 1 https://www.tensorflow.org/mobile/prepare_models#how_do_you_get_a_model_you_can_use_on_mobile