Imagine someone jumping off a balcony under a certain angle theta
and velocity v0
(the height of the balcony is denoted as ystar
). Looking at this problem in 2D and considering drag you get a system of differential equations which can be solved with a Runge-Kutta method (I choose explicit-midpoint, not sure what the butcher tableu for this one is). I implemented this and it works perfectly fine, for some given initial conditions I get the trajectory of the moving particle.
My problem is that I want to fix two of the initial conditions (starting point on the x-axis is zero and on the y-axis is ystar
) and make sure that the trajectory goes trough a certain point on the x-axis (let's call it xstar
). For this of course exist multiple combinations of the other two initial conditions, which in this case are the velocities in the x- and y-direction. The problem is that I don't know how to implement that.
The code that I used to solve the problem up to this point:
1) Implementation of the Runge-Kutta method
import numpy as np
import matplotlib.pyplot as plt
def integrate(methode_step, rhs, y0, T, N):
star = (int(N+1),y0.size)
y= np.empty(star)
t0, dt = 0, 1.* T/N
y[0,...] = y0
for i in range(0,int(N)):
y[i+1,...]=methode_step(rhs,y[i,...], t0+i*dt, dt)
t = np.arange(N+1) * dt
return t,y
def explicit_midpoint_step(rhs, y0, t0, dt):
return y0 + dt * rhs(t0+0.5*dt,y0+0.5*dt*rhs(t0,y0))
def explicit_midpoint(rhs,y0,T,N):
return integrate(explicit_midpoint_step,rhs,y0,T,N)
2) Implementation of the right-hand-side of the differential equation and the nessecery parameters
A = 1.9/2.
cw = 0.78
rho = 1.293
g = 9.81
# Mass and referece length
l = 1.95
m = 118
# Position
xstar = 8*l
ystar = 4*l
def rhs(t,y):
lam = cw * A * rho /(2 * m)
return np.array([y[1],-lam*y[1]*np.sqrt(y[1]**2+y[3]**2),y[3],-lam*y[3]*np.sqrt(y[1]**2+y[3]**2)-g])
3) solving the problem with it
# Parametrize the two dimensional velocity with an angle theta and speed v0
v0 = 30
theta = np.pi/6
v0x = v0 * np.cos(theta)
v0y = v0 * np.sin(theta)
# Initial condintions
z0 = np.array([0, v0x, ystar, v0y])
# Calculate solution
t, z = explicit_midpoint(rhs, z0, 5, 1000)
4) Visualization
plt.figure()
plt.plot(0,ystar,"ro")
plt.plot(x,0,"ro")
plt.plot(z[:,0],z[:,1])
plt.grid(True)
plt.xlabel(r"$x$")
plt.ylabel(r"$y$")
plt.show()
To make the question concrete: With this set up in mind, how do I find all possible combinations of v0
and theta
such that z[some_element,0]==xstar
I tried of course some things, mainly the brute force method of fixing theta
and then trying out all the possible velocities (in an intervall that makes sense) but finally didn't know how to compare the resulting arrays with the desired result...
Since this is mainly a coding issue I hope stack overflow is the right place to ask for help...
EDIT: As requested here is my try to solve the problem (replacing 3) and 4) from above)..
theta = np.pi/4.
xy = np.zeros((50,1001,2))
z1 = np.zeros((1001,2))
count=0
for v0 in range(0,50):
v0x = v0 * np.cos(theta)
v0y = v0 * np.sin(theta)
z0 = np.array([0, v0x, ystar, v0y])
# Calculate solution
t, z = explicit_midpoint(rhs, z0, 5, 1000)
if np.around(z[:,0],3).any() == round(xstar,3):
z1[:,0] = z[:,0]
z1[:,1] = z[:,2]
break
else:
xy[count,:,0] = z[:,0]
xy[count,:,1] = z[:,2]
count+=1
plt.figure()
plt.plot(0,ystar,"ro")
plt.plot(xstar,0,"ro")
for k in range(0,50):
plt.plot(xy[k,:,0],xy[k,:,1])
plt.plot(z[:,0],z[:,1])
plt.grid(True)
plt.xlabel(r"$x$")
plt.ylabel(r"$y$")
plt.show()
I'm sure that I'm using the .any()
function wrong, the idea there is to round the values of z[:,0]
to three digits and than compare them to xstar
, if it matches the loop should terminate and retrun the current z
, if not it should save it in another array and then increase v0
.
Here I post a corrected answer taking into account the drag by air.
Below is a python script to compute the set of (v0,theta)
values so that the air-dragged trajectory passes through (x,y) = (xstar,0)
at some time t=tstar
. I used the trajectory without air-drag as the initial guess and also to guess the dependence of x(tstar)
on v0
for the first refinement. The number of iterations needed to arrive at the correct v0
was typically 3 to 4. The script finished in 0.99 seconds on my laptop, including the time for generating figures.
The script generates two figures and one text file.
fig_xdrop_v0_theta.png
(v0,theta)
(v0,theta)
which would be a solution if there were no air drag.fig_traj_sample.png
(x,y)=(xstar,0)
when (v0,theta)
is sampled from the solution set.output.dat
(v0,theta)
as well as the landing time tstar
and number of iteration needed to find v0
.Here begins script.
#!/usr/bin/env python3
import numpy as np
import scipy.integrate
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.image as img
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.markeredgewidth'] = 1.0
mpl.rcParams['axes.formatter.limits'] = (-4,4)
#mpl.rcParams['axes.formatter.limits'] = (-2,2)
mpl.rcParams['axes.labelsize'] = 'large'
mpl.rcParams['xtick.labelsize'] = 'large'
mpl.rcParams['ytick.labelsize'] = 'large'
mpl.rcParams['xtick.direction'] = 'out'
mpl.rcParams['ytick.direction'] = 'out'
############################################
len_ref = 1.95
xstar = 8.0*len_ref
ystar = 4.0*len_ref
g_earth = 9.81
#
mass = 118
area = 1.9/2.
cw = 0.78
rho = 1.293
lam = cw * area * rho /(2.0 * mass)
############################################
ngtheta=51
theta_min = -0.1*np.pi
theta_max = 0.4*np.pi
theta_grid = np.linspace(theta_min, theta_max, ngtheta)
#
ngv0=100
v0min =6.0
v0max =18.0
v0_grid=np.linspace(v0min, v0max, ngv0)
# .. this grid is used for the initial coarse scan by reference trajecotry
############################################
outf=open('output.dat','w')
print('data file generated: output.dat')
###########################################
def calc_tstar_ref_and_x_ref_at_tstar_ref(v0, theta, ystar, g_earth):
'''return the drop time t* and drop point x(t*) of a reference trajectory
without air drag.
'''
vx = v0*np.cos(theta)
vy = v0*np.sin(theta)
ts_ref = (vy+np.sqrt(vy**2+2.0*g_earth*ystar))/g_earth
x_ref = vx*ts_ref
return (ts_ref, x_ref)
def rhs_drag(yvec, time, g_eath, lamb):
'''
dx/dt = v_x
dy/dt = v_y
du_x/dt = -lambda v_x sqrt(u_x^2 + u_y^2)
du_y/dt = -lambda v_y sqrt(u_x^2 + u_y^2) -g
yvec[0] .. x
yvec[1] .. y
yvec[2] .. v_x
yvec[3] .. v_y
'''
vnorm = (yvec[2]**2+yvec[3]**2)**0.5
return [ yvec[2], yvec[3], -lamb*yvec[2]*vnorm, -lamb*yvec[3]*vnorm -g_earth]
def try_tstar_drag(v0, theta, ystar, g_earth, lamb, tstar_search_grid):
'''one trial run to find the drop point x(t*), y(t*) of a trajectory
under the air drag.
'''
tinit=0.0
tgrid = [tinit]+list(tstar_search_grid)
yvec_list = scipy.integrate.odeint(rhs_drag,
[0.0, ystar, v0*np.cos(theta), v0*np.sin(theta)],
tgrid, args=(g_earth, lam))
y_drag = [yvec[1] for yvec in yvec_list]
x_drag = [yvec[0] for yvec in yvec_list]
if y_drag[0]<0.0:
ierr=-1
jtstar=0
tstar_braket=None
elif y_drag[-1]>0.0:
ierr=1
jtstar=len(y_drag)-1
tstar_braket=None
else:
ierr=0
for jt in range(len(y_drag)-1):
if y_drag[jt+1]*y_drag[jt]<=0.0:
tstar_braket=[tgrid[jt],tgrid[jt+1]]
if abs(y_drag[jt+1])<abs(y_drag[jt]):
jtstar = jt+1
else:
jtstar = jt
break
tstar_est = tgrid[jtstar]
x_drag_at_tstar_est = x_drag[jtstar]
y_drag_at_tstar_est = y_drag[jtstar]
return (tstar_est, x_drag_at_tstar_est, y_drag_at_tstar_est, ierr, tstar_braket)
def calc_x_drag_at_tstar(v0, theta, ystar, g_earth, lamb, tstar_est,
eps_y=1.0e-3, ngt_search=20,
rel_range_lower=0.8, rel_range_upper=1.2,
num_try=5):
'''compute the dop point x(t*) of a trajectory under the air drag.
'''
flg_success=False
tstar_est_lower=tstar_est*rel_range_lower
tstar_est_upper=tstar_est*rel_range_upper
for jtry in range(num_try):
tstar_search_grid = np.linspace(tstar_est_lower, tstar_est_upper, ngt_search)
tstar_est, x_drag_at_tstar_est, y_drag_at_tstar_est, ierr, tstar_braket \
= try_tstar_drag(v0, theta, ystar, g_earth, lamb, tstar_search_grid)
if ierr==-1:
tstar_est_upper = tstar_est_lower
tstar_est_lower = tstar_est_lower*rel_range_lower
elif ierr==1:
tstar_est_lower = tstar_est_upper
tstar_est_upper = tstar_est_upper*rel_range_upper
else:
if abs(y_drag_at_tstar_est)<eps_y:
flg_success=True
break
else:
tstar_est_lower=tstar_braket[0]
tstar_est_upper=tstar_braket[1]
return (tstar_est, x_drag_at_tstar_est, y_drag_at_tstar_est, flg_success)
def find_v0(xstar, v0_est, theta, ystar, g_earth, lamb, tstar_est,
eps_x=1.0e-3, num_try=6):
'''solve for v0 so that x(t*)==x*.
'''
flg_success=False
v0_hist=[]
x_drag_at_tstar_hist=[]
jtry_end=None
for jtry in range(num_try):
tstar_est, x_drag_at_tstar_est, y_drag_at_tstar_est, flg_success_x_drag \
= calc_x_drag_at_tstar(v0_est, theta, ystar, g_earth, lamb, tstar_est)
v0_hist.append(v0_est)
x_drag_at_tstar_hist.append(x_drag_at_tstar_est)
if not flg_success_x_drag:
break
elif abs(x_drag_at_tstar_est-xstar)<eps_x:
flg_success=True
jtry_end=jtry
break
else:
# adjust v0
# better if tstar_est is also adjusted, but maybe that is too much.
if len(v0_hist)<2:
# This is the first run. Use the analytical expression of
# dx(tstar)/dv0 of the refernece trajectory
dx = xstar - x_drag_at_tstar_est
dv0 = dx/(tstar_est*np.cos(theta))
v0_est += dv0
else:
# use linear interpolation
v0_est = v0_hist[-2] \
+ (v0_hist[-1]-v0_hist[-2]) \
*(xstar -x_drag_at_tstar_hist[-2])\
/(x_drag_at_tstar_hist[-1]-x_drag_at_tstar_hist[-2])
return (v0_est, tstar_est, flg_success, jtry_end)
# make a reference table of t* and x(t*) of a trajectory without air drag
# as a function of v0 and theta.
tstar_ref=np.empty((ngtheta,ngv0))
xdrop_ref=np.empty((ngtheta,ngv0))
for j1 in range(ngtheta):
for j2 in range(ngv0):
tt, xx = calc_tstar_ref_and_x_ref_at_tstar_ref(v0_grid[j2], theta_grid[j1], ystar, g_earth)
tstar_ref[j1,j2] = tt
xdrop_ref[j1,j2] = xx
# make an estimate of v0 and t* of a dragged trajectory for each theta
# based on the reference trajectroy's landing position xdrop_ref.
tstar_est=np.empty((ngtheta,))
v0_est=np.empty((ngtheta,))
v0_est[:]=-1.0
# .. null value
for j1 in range(ngtheta):
for j2 in range(ngv0-1):
if (xdrop_ref[j1,j2+1]-xstar)*(xdrop_ref[j1,j2]-xstar)<=0.0:
tstar_est[j1] = tstar_ref[j1,j2]
# .. lazy
v0_est[j1] \
= v0_grid[j2] \
+ (v0_grid[j2+1]-v0_grid[j2])\
*(xstar-xdrop_ref[j1,j2])/(xdrop_ref[j1,j2+1]-xdrop_ref[j1,j2])
# .. linear interpolation
break
print('compute v0 for each theta under air drag..')
# compute v0 for each theta under air drag
theta_sol_list=[]
tstar_sol_list=[]
v0_sol_list=[]
outf.write('# theta v0 tstar numiter_v0\n')
for j1 in range(ngtheta):
if v0_est[j1]>0.0:
v0, tstar, flg_success, jtry_end \
= find_v0(xstar, v0_est[j1], theta_grid[j1], ystar, g_earth, lam, tstar_est[j1])
if flg_success:
theta_sol_list.append(theta_grid[j1])
v0_sol_list.append(v0)
tstar_sol_list.append(tstar)
outf.write('%26.16e %26.16e %26.16e %10i\n'
%(theta_grid[j1], v0, tstar, jtry_end+1))
theta_sol = np.array(theta_sol_list)
v0_sol = np.array(v0_sol_list)
tstar_sol = np.array(tstar_sol_list)
### Check a sample
jsample=np.size(v0_sol)//3
theta_sol_sample= theta_sol[jsample]
v0_sol_sample = v0_sol[jsample]
tstar_sol_sample= tstar_sol[jsample]
ngt_chk = 50
tgrid = np.linspace(0.0, tstar_sol_sample, ngt_chk)
yvec_list = scipy.integrate.odeint(rhs_drag,
[0.0, ystar,
v0_sol_sample*np.cos(theta_sol_sample),
v0_sol_sample*np.sin(theta_sol_sample)],
tgrid, args=(g_earth, lam))
y_drag_sol_sample = [yvec[1] for yvec in yvec_list]
x_drag_sol_sample = [yvec[0] for yvec in yvec_list]
# compute also the trajectory without drag starting form the same initial
# condiiton by setting lambda=0.
yvec_list = scipy.integrate.odeint(rhs_drag,
[0.0, ystar,
v0_sol_sample*np.cos(theta_sol_sample),
v0_sol_sample*np.sin(theta_sol_sample)],
tgrid, args=(g_earth, 0.0))
y_ref_sample = [yvec[1] for yvec in yvec_list]
x_ref_sample = [yvec[0] for yvec in yvec_list]
#######################################################################
# canvas setting
#######################################################################
f_size = (8,5)
#
a1_left = 0.15
a1_bottom = 0.15
a1_width = 0.65
a1_height = 0.80
#
hspace=0.02
#
ac_left = a1_left+a1_width+hspace
ac_bottom = a1_bottom
ac_width = 0.03
ac_height = a1_height
###########################################
############################################
# plot
############################################
#------------------------------------------------
print('plotting the solution..')
fig1=plt.figure(figsize=f_size)
ax1 =plt.axes([a1_left, a1_bottom, a1_width, a1_height], axisbg='w')
im1=img.NonUniformImage(ax1,
interpolation='bilinear', \
cmap=mpl.cm.Blues, \
norm=mpl.colors.Normalize(vmin=0.0,
vmax=np.max(xdrop_ref), clip=True))
im1.set_data(v0_grid, theta_grid/np.pi, xdrop_ref )
ax1.images.append(im1)
plt.contour(v0_grid, theta_grid/np.pi, xdrop_ref, [xstar], colors='y')
plt.plot(v0_sol, theta_sol/np.pi, 'ok', lw=4, label='Init Cond with Drag')
plt.legend(loc='lower left')
plt.xlabel(r'Initial Velocity $v_0$', fontsize=18)
plt.ylabel(r'Angle of Projection $\theta/\pi$', fontsize=18)
plt.yticks([-0.50, -0.25, 0.0, 0.25, 0.50])
ax1.set_xlim([v0min, v0max])
ax1.set_ylim([theta_min/np.pi, theta_max/np.pi])
axc =plt.axes([ac_left, ac_bottom, ac_width, ac_height], axisbg='w')
mpl.colorbar.Colorbar(axc,im1)
axc.set_ylabel('Distance from Blacony without Drag')
# 'Distance from Blacony $x(t^*)$'
plt.savefig('fig_xdrop_v0_theta.png')
print('figure file genereated: fig_xdrop_v0_theta.png')
plt.close()
#------------------------------------------------
print('plotting a sample trajectory..')
fig1=plt.figure(figsize=f_size)
ax1 =plt.axes([a1_left, a1_bottom, a1_width, a1_height], axisbg='w')
plt.plot(x_drag_sol_sample, y_drag_sol_sample, '-b', lw=2, label='with drag')
plt.plot(x_ref_sample, y_ref_sample, '--k', lw=2, label='without drag')
plt.axvline(x=xstar, color=[0.3, 0.3, 0.3], lw=1.0)
plt.axhline(y=0.0, color=[0.3, 0.3, 0.3], lw=1.0)
plt.legend()
plt.text(0.1*xstar, 0.6*ystar,
r'$v_0=%5.2f$'%(v0_sol_sample)+'\n'+r'$\theta=%5.2f \pi$'%(theta_sol_sample/np.pi),
fontsize=18)
plt.text(xstar, 0.5*ystar, 'xstar', fontsize=18)
plt.xlabel(r'Horizontal Distance $x$', fontsize=18)
plt.ylabel(r'Height $y$', fontsize=18)
ax1.set_xlim([0.0, 1.5*xstar])
ax1.set_ylim([-0.1*ystar, 1.5*ystar])
plt.savefig('fig_traj_sample.png')
print('figure file genereated: fig_traj_sample.png')
plt.close()
outf.close()
Here is the figure fig_xdrop_v0_theta.png
.
Here is the figure fig_traj_sample.png
.
I realized that I overlooked that the question considers the drag by air. What a shame on me. So, my answer below is not correct. I'm afraid that deleting my answer by myself looks like hiding a mistake, and I leave it below for now. If people think it's annoying that an incorrect answer hanging around, I'm O.K. someone delete it.
The differential equation can actually be solved by hand,
and it does not require much computational resource
to map out how far the person reach from the balcony
on the ground as a function of the initial velocity v0
and the
angle theta
. Then, you can select the condition (v0,theta)
such that distance_from_balcony_on_the_ground(v0,theta) = xstar
from this data table.
Let's write the horizontal and vertical coordinates of the
person at time t
is x(t)
and y(t)
, respectively.
I think you took x=0
at the wall of the building and y=0
as the ground level, and I do so here, too. Let's say the
horizontal and vertical velocity of the person at time t
are v_x(t)
and v_y(t)
, respectively.
The initial conditions at t=0
are given as
x(0) = 0
y(0) = ystar
v_x(0) = v0 cos theta
v_y(0) = v0 sin theta
The Newton eqution you are solving is,
dx/dt = v_x .. (1)
dy/dt = v_y .. (2)
m d v_x /dt = 0 .. (3)
m d v_y /dt = -m g .. (4)
where m
is the mass of the person,
and g
is the constant which I don't know the English name of,
but we all know what it is.
From eq. (3),
v_x(t) = v_x(0) = v0 cos theta.
Using this with eq. (1),
x(t) = x(0) + \int_0^t dt' v_x(t') = t v0 cos theta,
where we also used the initial condition. \int_0^t
means
integral from 0
to t
.
From eq. (4),
v_y(t)
= v_y (0) + \int_0^t dt' (-g)
= v0 sin theta -g t,
where we used the initial condition. Using this with eq. (3) and also using the initial condition,
y(t)
= y(0) + \int_0^t dt' v_y(t')
= ystar + t v0 sin theta -t^2 (g/2).
where t^2
means t
squared.
From the expression for y(t)
, we can get the time tstar
at which the person hits the ground. That is, y(tstar) =0
.
This equation can be solved by quadratic formula
(or something similar name) as
tstar = (v0 sin theta + sqrt((v0 sin theta)^2 + 2g ystar)/g,
where I used a condition tstar>0
. Now we know
the distance from the balcony the person reached when he hit
the ground as x(tstar)
. Using the expression for x(t)
above,
x(tstar) = (v0 cos theta) (v0 sin theta + sqrt((v0 sin theta)^2 + 2g ystar))/g.
.. (5)
Actually x(tstar)
depends on v0
and theta
as well as g
and ystar
.
You hold g
and ystar
as constants, and you want to find
all (v0,theta)
such that x(tstar) = xstar
for a given xstar
value.
Since the right hand side of eq. (5) can be computed cheaply,
you can set up grids for v0
and theta
and compute xstar
on this 2D grid. Then, you can see where roughly is the solution set
of (v0,theta)
lies. If you need precise solution, you can pick up
a segment which encloses the solution from this data table.
Below is a python script that demonstrates this idea.
I also attach here a figure generated by this script.
The yellow curve is the solution set (v0,theta)
such that the
person hit the ground at xstar
from the wall
when xstar = 8.0*1.95
and ystar=4.0*1.95
as you set.
The blue color coordinate indicates x(tstar)
, i.e., how far the
person jumped from the balcony horizontally.
Note that at a given v0
(higher than a threshold value aruond v0=9.9
),
the there are two theta
values (two directions for the person
to project himself) to reach the aimed point (x,y) = (xstar,0)
.
The smaller branch of the theta
value can be negative, meaning that the person can jump downward to reach the aimed point, as long as the initial velocity is sufficiently high.
The script also generates a data file output.dat
, which has
the solution-enclosing segments.
#!/usr/bin/python3
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.image as img
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.markeredgewidth'] = 1.0
mpl.rcParams['axes.formatter.limits'] = (-4,4)
#mpl.rcParams['axes.formatter.limits'] = (-2,2)
mpl.rcParams['axes.labelsize'] = 'large'
mpl.rcParams['xtick.labelsize'] = 'large'
mpl.rcParams['ytick.labelsize'] = 'large'
mpl.rcParams['xtick.direction'] = 'out'
mpl.rcParams['ytick.direction'] = 'out'
############################################
len_ref = 1.95
xstar = 8.0*len_ref
ystar = 4.0*len_ref
g_earth = 9.81
############################################
ngv0=100
v0min =0.0
v0max =20.0
v0_grid=np.linspace(v0min, v0max, ngv0)
############################################
outf=open('output.dat','w')
print('data file generated: output.dat')
###########################################
def x_at_tstar(v0, theta, ystar, g_earth):
vx = v0*np.cos(theta)
vy = v0*np.sin(theta)
return (vy+np.sqrt(vy**2+2.0*g_earth*ystar))*vx/g_earth
ngtheta=100
theta_min = -0.5*np.pi
theta_max = 0.5*np.pi
theta_grid = np.linspace(theta_min, theta_max, ngtheta)
xdrop=np.empty((ngv0,ngtheta))
# x(t*) as a function of v0 and theta.
for j1 in range(ngv0):
for j2 in range(ngtheta):
xdrop[j1,j2] = x_at_tstar(v0_grid[j1], theta_grid[j2], ystar, g_earth)
outf.write('# domain [theta_lower, theta_upper] that encloses the solution\n')
outf.write('# theta such that x_at_tstart(v0,theta, ystart, g_earth)=xstar\n')
outf.write('# v0 theta_lower theta_upper x_lower x_upper\n')
for j1 in range(ngv0):
for j2 in range(ngtheta-1):
if (xdrop[j1,j2+1]-xstar)*(xdrop[j1,j2]-xstar)<=0.0:
outf.write('%26.16e %26.16e %26.16e %26.16e %26.16e\n'
%(v0_grid[j1], theta_grid[j2], theta_grid[j2+1],
xdrop[j1,j2], xdrop[j1,j2+1]))
print('See output.dat for the segments enclosing solutions.')
print('You can hunt further for precise solutions using this data.')
#######################################################################
# canvas setting
#######################################################################
f_size = (8,5)
#
a1_left = 0.15
a1_bottom = 0.15
a1_width = 0.65
a1_height = 0.80
#
hspace=0.02
#
ac_left = a1_left+a1_width+hspace
ac_bottom = a1_bottom
ac_width = 0.03
ac_height = a1_height
###########################################
############################################
# plot
############################################
print('plotting..')
fig1=plt.figure(figsize=f_size)
ax1 =plt.axes([a1_left, a1_bottom, a1_width, a1_height], axisbg='w')
im1=img.NonUniformImage(ax1,
interpolation='bilinear', \
cmap=mpl.cm.Blues, \
norm=mpl.colors.Normalize(vmin=0.0,
vmax=np.max(xdrop), clip=True))
im1.set_data(v0_grid, theta_grid/np.pi, np.transpose(xdrop))
ax1.images.append(im1)
plt.contour(v0_grid, theta_grid/np.pi, np.transpose(xdrop), [xstar], colors='y')
plt.xlabel(r'Initial Velocity $v_0$', fontsize=18)
plt.ylabel(r'Angle of Projection $\theta/\pi$', fontsize=18)
plt.yticks([-0.50, -0.25, 0.0, 0.25, 0.50])
ax1.set_xlim([v0min, v0max])
ax1.set_ylim([theta_min/np.pi, theta_max/np.pi])
axc =plt.axes([ac_left, ac_bottom, ac_width, ac_height], axisbg='w')
mpl.colorbar.Colorbar(axc,im1)
# 'Distance from Blacony $x(t^*)$'
plt.savefig('fig_xdrop_v0_theta.png')
print('figure file genereated: fig_xdrop_v0_theta.png')
plt.close()
outf.close()