Search code examples
pythonpandasdataframeapplyseries

pandas apply and applymap functions are taking long time to run on large dataset


I have two functions applied on a dataframe

res = df.apply(lambda x:pd.Series(list(x)))  
res = res.applymap(lambda x: x.strip('"') if isinstance(x, str) else x)

{{Update}} Dataframe has got almost 700 000 rows. This is taking much time to run.

How to reduce the running time?

Sample data :

   A        
 ----------
0 [1,4,3,c] 
1 [t,g,h,j]  
2 [d,g,e,w]  
3 [f,i,j,h] 
4 [m,z,s,e] 
5 [q,f,d,s] 

output:

   A         B   C   D  E
-------------------------
0 [1,4,3,c]  1   4   3  c
1 [t,g,h,j]  t   g   h  j
2 [d,g,e,w]  d   g   e  w
3 [f,i,j,h]  f   i   j  h
4 [m,z,s,e]  m   z   s  e
5 [q,f,d,s]  q   f   d  s

This line of code res = df.apply(lambda x:pd.Series(list(x))) takes items from a list and fill one by one to each column as shown above. There will be almost 38 columns.


Solution

  • I think:

    res = df.apply(lambda x:pd.Series(list(x)))  
    

    should be changed to:

    df1 = pd.DataFrame(df['A'].values.tolist())
    print (df1)
       0  1  2  3
    0  1  4  3  c
    1  t  g  h  j
    2  d  g  e  w
    3  f  i  j  h
    4  m  z  s  e
    5  q  f  d  s
    

    And second if not mixed columns values - numeric with strings:

    cols = res.select_dtypes(object).columns
    res[cols] = res[cols].apply(lambda x: x.str.strip('"'))