I'd like to learn about neural nets starting with the very basic perceptron algorithm. So I've implemented one in PHP and I'm getting weird results after training it. All the 4 possible input combinations return either wrong or correct results (more often the wrong ones).
1) Is there something wrong with my implementation or the results I'm getting are normal?
2) Can this kind of implementation work with more than 2 inputs?
3) What would be the next (easiest) step in learning neural nets after this? Maybe adding more neurons, changing the activation function, or ...?
P.S. I'm pretty bad at math and don't necessarily understand the math behind perceptron 100%, at least not the training part.
<?php
namespace Perceptron;
class Perceptron
{
// Number of inputs
protected $n;
protected $weights = [];
protected $bias;
public function __construct(int $n)
{
$this->n = $n;
// Generate random weights for each input
for ($i = 0; $i < $n; $i++) {
$w = mt_rand(-100, 100) / 100;
array_push($this->weights, $w);
}
// Generate a random bias
$this->bias = mt_rand(-100, 100) / 100;
}
public function sum(array $inputs)
{
$sum = 0;
for ($i = 0; $i < $this->n; $i++) {
$sum += ($inputs[$i] * $this->weights[$i]);
}
return $sum + $this->bias;
}
public function activationFunction(float $sum)
{
return $sum < 0.0 ? 0 : 1;
}
public function predict(array $inputs)
{
$sum = $this->sum($inputs);
return $this->activationFunction($sum);
}
public function train(array $trainingSet, float $learningRate)
{
foreach ($trainingSet as $row) {
$inputs = array_slice($row, 0, $this->n);
$correctOutput = $row[$this->n];
$output = $this->predict($inputs);
$error = $correctOutput - $output;
// Adjusting the weights
$this->weights[0] = $this->weights[0] + ($learningRate * $error);
for ($i = 0; $i < $this->n - 1; $i++) {
$this->weights[$i + 1] =
$this->weights[$i] + ($learningRate * $inputs[$i] * $error);
}
}
// Adjusting the bias
$this->bias += ($learningRate * $error);
}
}
<?php
require_once 'vendor/autoload.php';
use Perceptron\Perceptron;
// Create a new perceptron with 2 inputs
$perceptron = new Perceptron(2);
// Test the perceptron
echo "Before training:\n";
$output = $perceptron->predict([0, 0]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([0, 1]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([1, 0]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([1, 1]);
echo "{$output} - " . ($output == 1 ? 'correct' : 'nope') . "\n";
// Train the perceptron
$trainingSet = [
// The 3rd column is the correct output
[0, 0, 0],
[0, 1, 0],
[1, 0, 0],
[1, 1, 1],
];
for ($i = 0; $i < 1000; $i++) {
$perceptron->train($trainingSet, 0.1);
}
// Test the perceptron again - now the results should be correct
echo "\nAfter training:\n";
$output = $perceptron->predict([0, 0]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([0, 1]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([1, 0]);
echo "{$output} - " . ($output == 0 ? 'correct' : 'nope') . "\n";
$output = $perceptron->predict([1, 1]);
echo "{$output} - " . ($output == 1 ? 'correct' : 'nope') . "\n";
Found my silly mistake, I wasn't adjusting the bias for each row of a training set as I accidentally put it outside the foreach
loop. This is what the train()
method should look like:
public function train(array $trainingSet, float $learningRate)
{
foreach ($trainingSet as $row) {
$inputs = array_slice($row, 0, $this->n);
$correctOutput = $row[$this->n];
$output = $this->predict($inputs);
$error = $correctOutput - $output;
// Adjusting the weights
for ($i = 0; $i < $this->n; $i++) {
$this->weights[$i] += ($learningRate * $inputs[$i] * $error);
}
// Adjusting the bias
$this->bias += ($learningRate * $error);
}
}
Now I get the correct results after training each time I run the script. Just 100 epochs of training is enough.