I am working on a game with a 8 wide 5 high grid. I have a 'snake' feature which needs to enter the grid and "walk" around for a set distance (20 for example). There are certain restrictions for the movement of the snake:
Currently I am using a Randomised Depth First search, however I have found that it occasionally goes back over itself (crosses its own path) and am not sure if this is the best way to go about it.
Options considered: I have looked at using A*, but am struggling to figure out a good way to do it without a predetermined goal and the conditions above. I have also considered adding a heuristic to favour blocks that are not on the outside of the grid - but am not sure either of these will solve the issue at hand.
Any help is appreciated and I can add more detail or code if necessary:
public List<GridNode> RandomizedDepthFirst(int distance, GridNode startNode)
{
Stack<GridNode> frontier = new Stack<GridNode>();
frontier.Push(startNode);
List<GridNode> visited = new List<GridNode>();
visited.Add(startNode);
while (frontier.Count > 0 && visited.Count < distance)
{
GridNode current = frontier.Pop();
if (current.nodeState != GridNode.NodeState.VISITED)
{
current.nodeState = GridNode.NodeState.VISITED;
GridNode[] vals = current.FindNeighbours().ToArray();
List<GridNode> neighbours = new List<GridNode>();
foreach (GridNode g in vals.OrderBy(x => XMLReader.NextInt(0,0)))
{
neighbours.Add(g);
}
foreach (GridNode g in neighbours)
{
frontier.Push(g);
}
if (!visited.Contains(current))
{
visited.Add(current);
}
}
}
return visited;
}
An easy way to account for back tracking is using a recursive dfs search.
Consider the following graph:
And a java implementation of a dfs search, removing nodes from the path when backtracking (note the comments. Run it online here) :
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Stack;
public class Graph {
//all graph nodes
private Node[] nodes;
public Graph(int numberOfNodes) {
nodes = new Node[numberOfNodes];
//construct nodes
for (int i = 0; i < numberOfNodes; i++) {
nodes[i] = new Node(i);
}
}
// add edge from a to b
public Graph addEdge(int from, int to) {
nodes[from].addNeighbor(nodes[to]);
//unless unidirectional: //if a is connected to b
//than b should be connected to a
nodes[to].addNeighbor(nodes[from]);
return this; //makes it convenient to add multiple edges
}
//returns a list of path size of pathLength.
//if path not found : returns an empty list
public List<Node> dfs(int pathLength, int startNode) {
List<Node> path = new ArrayList<>(); //a list to hold all nodes in path
Stack<Node> frontier = new Stack<>();
frontier.push(nodes[startNode]);
dfs(pathLength, frontier, path);
return path;
}
private boolean dfs(int pathLength, Stack<Node> frontier, List<Node> path) {
if(frontier.size() < 1) {
return false; //stack is empty, no path found
}
Node current = frontier.pop();
current.setVisited(true);
path.add(current);
if(path.size() == pathLength) {
return true; //path size of pathLength found
}
System.out.println("testing node "+ current); //for testing
Collections.shuffle(current.getNeighbors()); //shuffle list of neighbours
for(Node node : current.getNeighbors()) {
if(! node.isVisited()) {
frontier.push(node);
if(dfs(pathLength, frontier, path)) { //if solution found
return true; //return true. continue otherwise
}
}
}
//if all neighbours tested and no solution found, current node
//is not part of the path
path.remove(current); // remove it
current.setVisited(false); //this accounts for loops: you may get to this node
//from another edge
return false;
}
public static void main(String[] args){
Graph graph = new Graph(9); //make graph
graph.addEdge(0, 4) //add edges
.addEdge(0, 1)
.addEdge(1, 2)
.addEdge(1, 4)
.addEdge(4, 3)
.addEdge(2, 3)
.addEdge(2, 5)
.addEdge(3, 5)
.addEdge(1, 6)
.addEdge(6, 7)
.addEdge(7, 8);
//print path with length of 6, starting with node 1
System.out.println( graph.dfs(6,1));
}
}
class Node {
private int id;
private boolean isVisited;
private List<Node>neighbors;
Node(int id){
this.id = id;
isVisited = false;
neighbors = new ArrayList<>();
}
List<Node> getNeighbors(){
return neighbors;
}
void addNeighbor(Node node) {
neighbors.add(node);
}
boolean isVisited() {
return isVisited;
}
void setVisited(boolean isVisited) {
this.isVisited = isVisited;
}
@Override
public String toString() {return String.valueOf(id);} //convenience
}
Output:
testing node 1 testing node 6 testing node 7 testing node 8 testing node 2 testing node 5 testing node 3 testing node 4 [1, 2, 5, 3, 4, 0]
Note that nodes 6,7,8 which are dead-end, are tested, but not included in the final path.