I want to include hyphenated words for example: long-term, self-esteem, etc. as a single token in Spacy. After looking at some similar posts on StackOverflow, Github, its documentation and elsewhere, I also wrote a custom tokenizer as below:
import re
from spacy.tokenizer import Tokenizer
prefix_re = re.compile(r'''^[\[\("']''')
suffix_re = re.compile(r'''[\]\)"']$''')
infix_re = re.compile(r'''[.\,\?\:\;\...\‘\’\`\“\”\"\'~]''')
def custom_tokenizer(nlp):
return Tokenizer(nlp.vocab, prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=None)
nlp = spacy.load('en_core_web_lg')
nlp.tokenizer = custom_tokenizer(nlp)
doc = nlp(u'Note: Since the fourteenth century the practice of “medicine” has become a profession; and more importantly, it\'s a male-dominated profession.')
[token.text for token in doc]
So for this sentence: 'Note: Since the fourteenth century the practice of “medicine” has become a profession; and more importantly, it\'s a male-dominated profession.'
Now, the tokens after incorporating the custom Spacy Tokenizer are:
'Note', ':', 'Since', 'the', 'fourteenth', 'century', 'the', 'practice', 'of', '“medicine', '”', 'has', ';', 'become', 'a', 'profession', ',', 'and', 'more', 'importantly', ',', "it's", 'a', 'male-dominated', 'profession', '.'
Earlier, the tokens before this change were:
'Note', ':', 'Since', 'the', 'fourteenth', 'century', 'the', 'practice', 'of', '“', 'medicine', '”', 'has', 'become', 'a', 'profession', ';', 'and', 'more', 'importantly', ',', 'it', "'s", 'a', 'male', '-', 'dominated', 'profession', '.'
And, the expected tokens should be:
'Note', ':', 'Since', 'the', 'fourteenth', 'century', 'the', 'practice', 'of', '“', 'medicine', '”', 'has', 'become', 'a', 'profession', ';', 'and', 'more', 'importantly', ',', 'it', "'s", 'a', 'male-dominated', 'profession', '.'
Summary: As one can see...
Using the default prefix_re and suffix_re gives me the expected output:
import re
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, compile_infix_regex, compile_suffix_regex
def custom_tokenizer(nlp):
infix_re = re.compile(r'''[.\,\?\:\;\...\‘\’\`\“\”\"\'~]''')
prefix_re = compile_prefix_regex(nlp.Defaults.prefixes)
suffix_re = compile_suffix_regex(nlp.Defaults.suffixes)
return Tokenizer(nlp.vocab, prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=None)
nlp = spacy.load('en')
nlp.tokenizer = custom_tokenizer(nlp)
doc = nlp(u'Note: Since the fourteenth century the practice of “medicine” has become a profession; and more importantly, it\'s a male-dominated profession.')
[token.text for token in doc]
['Note', ':', 'Since', 'the', 'fourteenth', 'century', 'the', 'practice', 'of', '“', 'medicine', '”', 'has', 'become', 'a', 'profession', ';', 'and', 'more', 'importantly', ',', 'it', "'s", 'a', 'male-dominated', 'profession', '.']
If you want to dig into to why your regexes weren't working like SpaCy's, here are links to the relevant source code:
Prefixes and suffixes defined here:
https://github.com/explosion/spaCy/blob/master/spacy/lang/punctuation.py
With reference to characters (e.g, quotes, hyphens, etc.) defined here:
https://github.com/explosion/spaCy/blob/master/spacy/lang/char_classes.py
And the functions used to compile them (e.g., compile_prefix_regex):
https://github.com/explosion/spaCy/blob/master/spacy/util.py