Search code examples
algorithmgraph-theoryclique-problem

Clique problem algorithm design


One of the assignments in my algorithms class is to design an exhaustive search algorithm to solve the clique problem. That is, given a graph of size n, the algorithm is supposed to determine if there is a complete sub-graph of size k. I think I've gotten the answer, but I can't help but think it could be improved. Here's what I have:

Version 1

input: A graph represented by an array A[0,...n-1], the size k of the subgraph to find.

output: True if a subgraph exists, False otherwise

Algorithm (in python-like pseudocode):

def clique(A, k):
    P = A x A x A //Cartesian product
    for tuple in P:
        if connected(tuple):
            return true
    return false

def connected(tuple):
    unconnected = tuple
    for vertex in tuple:
        for test_vertex in unconnected:
            if vertex is linked to test_vertex:
                remove test_vertex from unconnected
    if unconnected is empty:
        return true
    else:
        return false

Version 2

input: An adjacency matrix of size n by n, and k the size of the subgraph to find

output: All complete subgraphs in A of size k.

Algorithm (this time in functional/Python pseudocode):

//Base case:  return all vertices in a list since each
//one is a 1-clique
def clique(A, 1):
    S = new list
    for i in range(0 to n-1):
        add i to S
    return S

//Get a tuple representing all the cliques where
//k = k - 1, then find any cliques for k
def clique(A,k):
    C = clique(A, k-1)
    S = new list
    for tuple in C:
        for i in range(0 to n-1):
            //make sure the ith vertex is linked to each
            //vertex in tuple
            for j in tuple:
                if A[i,j] != 1:
                    break
            //This means that vertex i makes a clique
            if j is the last element:
                newtuple = (i | tuple) //make a new tuple with i added
                add newtuple to S
    //Return the list of k-cliques
    return S

Does anybody have any thoughts, comments, or suggestions? This includes bugs I might have missed as well as ways to make this more readable (I'm not used to using much pseudocode).

Version 3

Fortunately, I talked to my professor before submitting the assignment. When I showed him the pseudo-code I had written, he smiled and told me that I did way too much work. For one, I didn't have to submit pseudo-code; I just had to demonstrate that I understood the problem. And two, he was wanting the brute force solution. So what I turned in looked something like this:

input: A graph G = (V,E), the size of the clique to find k

output: True if a clique does exist, false otherwise

Algorithm:

  1. Find the Cartesian Product Vk.
  2. For each tuple in the result, test whether each vertex is connected to every other. If all are connected, return true and exit.
  3. Return false and exit.

UPDATE: Added second version. I think this is getting better although I haven't added any fancy dynamic programming (that I know of).

UPDATE 2: Added some more commenting and documentation to make version 2 more readable. This will probably be the version I turn in today. Thanks for everyone's help! I wish I could accept more than one answer, but I accepted the answer by the person that's helped me out the most. I'll let you guys know what my professor thinks.


Solution

  • Some comments:

    • You only need to consider n-choose-k combinations of vertices, not all k-tuples (n^k of them).
    • connected(tuple) doesn't look right. Don't you need to reset unconnected inside the loop?
    • As the others have suggested, there are better ways of brute-forcing this. Consider the following recursive relation: A (k+1)-subgraph is a clique if the first k vertices form a clique and vertex (k+1) is adjacent to each of the first k vertices. You can apply this in two directions:
      • Start with a 1-clique and gradually expand the clique until you get the desired size. For example, if m is the largest vertex in the current clique, try to add vertex {m+1, m+2, ..., n-1} to get a clique that is one vertex larger. (This is similar to a depth-first tree traversal, where the children of a tree node are the vertices larger than the largest vertex in the current clique.)
      • Start with a subgraph of the desired size and check if it is a clique, using the recursive relation. Set up a memoization table to store results along the way.
    • (implementation suggestion) Use an adjacency matrix (0-1) to represent edges in the graph.
    • (initial pruning) Throw away all vertices with degree less than k.