Suppose I have a circle x**2 + y**2 = 20
.
Now I want to plot the circle with n_dots
number of dots in the circles perimeter in a scatter plot. So I created the code like below:
n_dots = 200
x1 = np.random.uniform(-20, 20, n_dots//2)
y1_1 = (400 - x1**2)**.5
y1_2 = -(400 - x1**2)**.5
plt.figure(figsize=(8, 8))
plt.scatter(x1, y1_1, c = 'blue')
plt.scatter(x1, y1_2, c = 'blue')
plt.show()
But this shows the dots not uniformly distributed all the places in the circle. The output is :
So how to create a circle with dots in scatter plot where all the dots are uniformly distributed in the perimeter of the circle?
for a very generalized answer that also works in 2D:
import numpy as np
import matplotlib.pyplot as plt
def u_sphere_pts(dim, N):
"""
uniform distribution points on hypersphere
from uniform distribution in n-D (<-1, +1>) hypercube,
clipped by unit 2 norm to get the points inside the insphere,
normalize selected points to lie on surface of unit radius hypersphere
"""
# uniform points in hypercube
u_pts = np.random.uniform(low=-1.0, high=1.0, size=(dim, N))
# n dimensional 2 norm squared
norm2sq = (u_pts**2).sum(axis=0)
# mask of points where 2 norm squared < 1.0
in_mask = np.less(norm2sq, np.ones(N))
# use mask to select points, norms inside unit hypersphere
in_pts = np.compress(in_mask, u_pts, axis=1)
in_norm2 = np.sqrt(np.compress(in_mask, norm2sq)) # only sqrt selected
# return normalized points, equivalently, projected to hypersphere surface
return in_pts/in_norm2
# show some 2D "sphere" points
N = 1000
dim = 2
fig2, ax2 = plt.subplots()
ax2.scatter(*u_sphere_pts(dim, N))
ax2.set_aspect('equal')
plt.show()
# plot histogram of angles
pts = u_sphere_pts(dim, 1000000)
theta = np.arctan2(pts[0,:], pts[1,:])
num_bins = 360
fig1, ax1 = plt.subplots()
n, bins, patches = plt.hist(theta, num_bins, facecolor='blue', alpha=0.5)
plt.show()
similar/related: https://stackoverflow.com/questions/45580865/python-generate-an-n-dimensional-hypercube-using-rejection-sampling#comment78122144_45580865
Python Uniform distribution of points on 4 dimensional sphere
http://mathworld.wolfram.com/HyperspherePointPicking.html
Sampling uniformly distributed random points inside a spherical volume