Testing the polynomial '2x^3+4x^2+8x-16' my code below outputs [6, 8] as the coefficients of the differentiated polynomial. However, the output should be [6, 8, 8]. Why is the function getNewCoefficients producing the wrong result? What would be a good way to produce the correct result?
def getNumbers(polynomial):
regex = re.compile(r"[+-]?\d+(?:\.\d+)?")
return regex.findall(polynomial)
def formatNumbers(numbers):
formattedNumbers = []
for e in numbers:
if (e[0] == '+'):
formattedNumbers.append(e[1:])
else:
formattedNumbers.append(e)
return formattedNumbers
def getNumberPositions(polynomial, numbers):
numberPositions = []
for e in numbers:
tmp = [m.start() for m in re.finditer(e, polynomial)]
for f in tmp:
if f not in numberPositions:
numberPositions.append(f)
return sorted(numberPositions)
def getNewCoefficients(polynomial, numberPositions, numbers):
tmp = '0'
newCoefficients = []
for i in range(0,len(numberPositions)):
if numberPositions[i] + 1 < len(polynomial):
if polynomial[numberPositions[i] + 1] == '+' or polynomial[numberPositions[i] + 1] == '-':
newCoefficients.append(int(numbers[i])*int(tmp))
elif numberPositions[i] - 1 > 0:
if polynomial[numberPositions[i] - 1] == '+' or polynomial[numberPositions[i] - 1] == '-':
newCoefficients.append(int(numbers[i]))
tmp = numbers[i]
return newCoefficients
This problem can be solved much more easily using negative lookbehind assertions.
COEFFICIENT_PATTERN = re.compile(r"(?<!x\^)(?<!x\^-)-?\d+")
coefficients = [int(c) for c in COEFFICIENT_PATTERN.findall(polynomial)]
This solution uses two negative lookbehinds for x^
and x^-
(because look behinds must be fixed length). So it reads "get me all integers not preceded by x^
.
>>> COEFFICIENT_PATTERN.findall('2x^3+4x^2+8x-16')
['2', '4', '8', '-16']